Learn More
Dopamine, like other neurotransmitters, exerts its biological effects by occupation of specific receptor subtypes. The dopamine receptors in the central nervous system and certain endocrine organs are classified into the D1/D2 subtypes. Outside the central nervous system, the dopamine receptors are classified into the DA1/DA2 subtypes. The D1/D2 and DA1/DA2(More)
Dopamine receptors in glomeruli and renal cortical tubules were characterized using radioligand binding and adenylate cyclase studies. The binding of [3H]haloperidol to glomeruli and tubules was rapid, saturable with time and ligand concentration, reversible, of high affinity, and demonstrated stereoselectivity and antagonist and agonist rank potency for(More)
BACKGROUND Human hypertension is a complex, multifactorial disease with a heritability of more than 30-50%. A genetic screening test based on analysis of multiple single-nucleotide polymorphisms (SNPs) to assess the likelihood of developing hypertension would be helpful for disease management. METHODS Tailed allele-specific primers were designed to(More)
Essential hypertension has a heritability as high as 30-50%, but its genetic cause(s) has not been determined despite intensive investigation. The renal dopaminergic system exerts a pivotal role in maintaining fluid and electrolyte balance and participates in the pathogenesis of genetic hypertension. In genetic hypertension, the ability of dopamine and(More)
Ion transport can be regulated by dopamine receptors. D1-like receptors inhibit both Na+/H+ exchange (NHE) and Na+/K(+)-ATPase activity, whereas D2-like receptors stimulate NHE. However, the effect of D2-like receptors on Na+/K(+)-ATPase activity is controversial. In renal proximal tubular cells, where several D1-like and D2-like receptors are expressed, D2(More)
Renal sodium transport is increased by the angiotensin type 1 receptor (AT(1)R), which is counterregulated by dopamine via unknown mechanisms involving either the dopamine type 1 (D(1)R) or dopamine type 5 receptor (D(5)R) that belong to the D(1)-like receptor family of dopamine receptors. We hypothesize that the D(1)R and D(5)R differentially regulate(More)
Previous studies have demonstrated that single nucleotide polymorphisms (SNPs) of the sodium-bicarbonate co-transporter gene (SLC4A5) are associated with hypertension. We tested the hypothesis that SNPs in SLC4A5 are associated with salt sensitivity of blood pressure in 185 whites consuming an isocaloric constant diet with a randomized order of 7 days of(More)
Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we(More)
Activation of renal dopamine-1 receptors decreases sodium transport. However, the spontaneously hypertensive rat retains sodium despite increased renal dopamine concentration. We tested the hypothesis that the abnormal sodium handling in spontaneously hypertensive rats (Okamoto-Aoki strain) is related to a decreased dopaminergic response by studying the(More)
Our laboratory has characterized dopamine receptors in glomeruli and tubular homogenates. Since the heterogeneity of kidney homogenates limits the interpretation of these studies, the [3H]haloperidol binding site and adenylate cyclase sensitivity to dopamine were studied in the isolated proximal convoluted tubule and pars recta of the rabbit kidney.(More)