Robin A. Felder

Learn More
Essential hypertension has a heritability as high as 30-50%, but its genetic cause(s) has not been determined despite intensive investigation. The renal dopaminergic system exerts a pivotal role in maintaining fluid and electrolyte balance and participates in the pathogenesis of genetic hypertension. In genetic hypertension, the ability of dopamine and(More)
This paper describes a study designed to assess the acceptance and some psychosocial impacts of monitoring technology in assisted living. Monitoring systems were installed in 22 assisted living units to track the activities of daily living (ADLs) and key alert conditions of residents (15 of whom were nonmemory care residents). Activity reports and alert(More)
In this paper, we examine at-home activity rhythms and present a dozen of behavioral patterns obtained from an activity monitoring pilot study of 22 residents in an assisted living setting with four case studies. Established behavioral patterns have been captured using custom software based on a statistical predictive algorithm that models circadian(More)
BACKGROUND Human hypertension is a complex, multifactorial disease with a heritability of more than 30-50%. A genetic screening test based on analysis of multiple single-nucleotide polymorphisms (SNPs) to assess the likelihood of developing hypertension would be helpful for disease management. METHODS Tailed allele-specific primers were designed to(More)
Activation of D1-like receptors (D1 and/or D5) induces antioxidant responses; however, the mechanism(s) involved in their antioxidant actions are not known. We hypothesized that stimulation of the D5 receptor inhibits NADPH oxidase activity, and thus the production of reactive oxygen species (ROS). We investigated this issue in D5 receptor-deficient (D5-/-)(More)
Renal sodium transport is increased by the angiotensin type 1 receptor (AT(1)R), which is counterregulated by dopamine via unknown mechanisms involving either the dopamine type 1 (D(1)R) or dopamine type 5 receptor (D(5)R) that belong to the D(1)-like receptor family of dopamine receptors. We hypothesize that the D(1)R and D(5)R differentially regulate(More)
Dopamine, like other neurotransmitters, exerts its biological effects by occupation of specific receptor subtypes. The dopamine receptors in the central nervous system and certain endocrine organs are classified into the D1/D2 subtypes. Outside the central nervous system, the dopamine receptors are classified into the DA1/DA2 subtypes. The D1/D2 and DA1/DA2(More)
Dopamine receptors in glomeruli and renal cortical tubules were characterized using radioligand binding and adenylate cyclase studies. The binding of [3H]haloperidol to glomeruli and tubules was rapid, saturable with time and ligand concentration, reversible, of high affinity, and demonstrated stereoselectivity and antagonist and agonist rank potency for(More)
BACKGROUND Dopamine receptors in the kidney, especially those belonging to the D1-like receptor family, are important in the regulation of renal function and blood pressure. Because of increasing evidence that G protein-coupled receptors (GPCRs) are associated with caveolae and lipid rafts, we tested the hypothesis that the D1 dopamine receptor (D1R) and(More)
Dopamine is an important regulator of blood pressure. Its actions on renal hemodynamics, epithelial transport and humoral agents such as aldosterone, catecholamines, endothelin, prolactin, pro-opiomelanocortin, renin and vasopressin place it in central homeostatic position for regulation of extracellular fluid volume and blood pressure. Dopamine also(More)