Learn More
Two different aortic prostheses can be used for performing the Bentall procedure: a standard straight graft and the Valsalva graft that better reproduces the aortic root anatomy. The aim of the present work is to study the effect of the graft geometry on the blood flow when a bileaflet mechanical heart valve is used, as well as to evaluate the stress(More)
Experimental and numerical data for the heat transfer as a function of the Rayleigh, Prandtl, and Rossby numbers in turbulent rotating Rayleigh-Bénard convection are presented. For relatively small Ra approximately 10(8) and large Pr modest rotation can enhance the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement, and at(More)
Direct numerical simulation and stereoscopic particle image velocimetry of turbulent convection are used to gather spatial data for the calculation of structure functions. We wish to add to the ongoing discussion in the literature whether temperature acts as an active or passive scalar in turbulent convection, with consequences for structure-function(More)
We report results for the temperature profiles of turbulent Rayleigh-Bénard convection (RBC) in the interior of a cylindrical sample of aspect ratio Γ≡D/L=0.50 (D and L are the diameter and height, respectively). Both in the classical and in the ultimate state of RBC we find that the temperature varies as A×ln(z/L)+B, where z is the distance from the bottom(More)
The in vivo evaluation of prosthetic device performance is often difficult, if not impossible. In particular, in order to deal with potential problems such as thrombosis, haemolysis, etc., which could arise when a patient undergoes heart valve replacement, a thorough understanding of the blood flow dynamics inside the devices interacting with natural or(More)
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case(More)
(Received ?? and in revised form ??) Results from direct numerical simulations for three dimensional Rayleigh-Bénard con-vection in a cylindrical cell of aspect ratio 1/2 and P r = 0.7 are presented. They span five decades of Ra from 2 × 10 6 to 2 × 10 11. Good numerical resolution with grid spacing ∼ Kolmogorov scale turns out to be crucial to accurately(More)
OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic(More)
We numerically investigate the radial dependence of the velocity and temperature fluctuations and of the time-averaged heat flux j ¯(r) in a cylindrical Rayleigh-Bénard cell with aspect ratio Γ=1 for Rayleigh numbers Ra between 2×10^{6} and 2×10^{9} at a fixed Prandtl number Pr=5.2. The numerical results reveal that the heat flux close to the sidewall is(More)