Learn More
Internet technology offers an excellent opportunity for the development of tools by the cooperative effort of various groups and institutions. We have developed a multi-platform software system, Virtual Computational Chemistry Laboratory, http://www.vcclab.org, allowing the computational chemist to perform a comprehensive series of molecular(More)
This paper deals with the problem of evaluating the predictive ability of QSAR models and continues the discussion about proper estimates of the predictive ability from an external evaluation set reported in Schüürmann G., Ebert R.-U., et al. External Validation and Prediction Employing the Predictive Squared Correlation Coefficient--Test Set Activity Mean(More)
The estimation of the accuracy of predictions is a critical problem in QSAR modeling. The "distance to model" can be defined as a metric that defines the similarity between the training set molecules and the test set compound for the given property in the context of a specific model. It could be expressed in many different ways, e.g., using Tanimoto(More)
Novel molecular descriptors based on a leverage matrix similar to that defined in statistics and usually used for regression diagnostics are presented. This leverage matrix, called Molecular Influence Matrix (MIM), is here proposed as a new molecular representation easily calculated from the spatial coordinates of the molecule atoms in a chosen(More)
The recently proposed WHIM (Weighted Holistic Invariant Molecular) approach [Todeschini, R., Lasagni, M. and Marengo, E., J. Chemometrics, 8 (1994) 263] has been applied to molecular surfaces to derive new 3D theoretical descriptors, called MS-WHIM. To test their reliability, a 3D QSAR study has been performed on a series of steroids, comparing the MS-WHIM(More)
The estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical properties represents a critical problem. The developed parameter of "distance to model" (DM) is defined as a metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling. In our previous work, we(More)
One of the OECD principles for model validation requires defining the Applicability Domain (AD) for the QSAR models. This is important since the reliable predictions are generally limited to query chemicals structurally similar to the training compounds used to build the model. Therefore, characterization of interpolation space is significant in defining(More)
In a previous paper the theory of the new molecular descriptors called GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) was explained. These descriptors have been proposed with the aim of matching 3D-molecular geometry, atom relatedness, and chemical information. In this paper prediction ability in structure-property correlations of GETAWAY(More)
The European REACH regulation requires information on ready biodegradation, which is a screening test to assess the biodegradability of chemicals. At the same time REACH encourages the use of alternatives to animal testing which includes predictions from quantitative structure-activity relationship (QSAR) models. The aim of this study was to build QSAR(More)