Learn More
By means of one- and two-dimensional transient infrared spectroscopy and femtosecond stimulated Raman spectroscopy, we investigated the excited state dynamics of peridinin, a carbonyl carotenoid occurring in natural light harvesting complexes. The presence of singly and doubly excited states, as well as of an intramolecular charge transfer (ICT) state,(More)
The propagation of light in nonperiodic quasicrystals is studied by ultrashort pulse interferometry. Samples consist of multilayer dielectric structures of the Fibonacci type and are realized from porous silicon. We observe mode beating and strong pulse stretching in the light transport through these systems, and a strongly suppressed group velocity for(More)
The liquid and supercooled states of water show a series of anomalies whose nature is debated. A key role is attributed to the formation of structural aggregates induced by critical phenomena occurring deep in the supercooled region; the nature of the water anomalies and of the hidden critical processes remains elusive. Here we report a time-resolved(More)
Water has many kinetic and thermodynamic properties that exhibit an anomalous dependence on temperature, in particular in the supercooled phase. These anomalies have long been interpreted in terms of underlying structural causes, and their experimental characterization points to the existence of a singularity at a temperature of about 225 K. Further(More)
In this work we present, to our knowledge for the first time, the results of a transient infrared spectroscopic study of the photoinduced valence tautomerism process in cobalt-dioxolene complexes with sub-picosecond time resolution. The molecular systems investigated were [Co(tpa)(diox)]PF(6) (1) and [Co(Me(3)tpa)(diox)]PF(6) (2), where diox =(More)
The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of(More)
The physics of confined water has stimulated extensive research in recent years, in particular, regarding the role of hydrogen bonding as a significant factor in the observed dynamics. In this work, two-dimensional infrared spectroscopy was employed to investigate the response of the OH moiety of water in phospholipid membrane samples. The results show(More)
The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The(More)
Femtosecond infrared (IR) two-color pump-probe experiments were used to investigate the nonlinear response of the D2O stretching vibration in weakly hydrated dimyristoyl-phosphatidylcholine (DMPC) membrane fragments. The vibrational lifetime is comparable to or longer than that in bulk D2O and is frequency dependent, as it decreases with increasing probe(More)
Two-dimensional infrared (2D-IR) spectroscopy has been used to probe structure and dynamics in binary sphingomyelin/phospholipid liposomes. The liposomes consist of 1-palmitoyl-2-linoleyl phosphatidylcholine (PLPC) and sphingomyelin (SPM) in the ratio 1:1. The diagonal part of the 2D-IR spectra shows two bands which are due to amide I of SPM and to the(More)