Learn More
Expression of TMEM16A protein is associated with the activity of Ca(2+)-activated Cl(-) channels. TMEM16A primary transcript undergoes alternative splicing. thus resulting in the generation of multiple isoforms. We have determined the pattern of splicing and assessed the functional properties of the corresponding TMEM16A variants. We found three alternative(More)
Charcot-Marie-Tooth disease type 4B1, CMT4B1, is a severe, autosomal-recessive, demyelinating peripheral neuropathy, due to mutations in the Myotubularin-related 2 gene, MTMR2. MTMR2 is widely expressed and encodes a phosphatase whose substrates include phosphoinositides. However, this does not explain how MTMR2 mutants specifically produce demyelination in(More)
TMEM16A protein, also known as anoctamin-1, has been recently identified as an essential component of Ca(2+)-activated Cl(-) channels. We previously reported the existence of different TMEM16A isoforms generated by alternative splicing. In the present study, we have determined the functional properties of a minimal TMEM16A protein. This isoform, called(More)
Understanding the molecular mechanisms that underlie regulation of transcription of the human osteopontin encoding gene (OPN) may help to clarify several processes, such as fibrotic evolution of organ damage, tumorigenesis and metastasis, and immune response, in which OPN overexpression is observed. With the aim to evaluate variants with functional effect(More)
The metabotropic glutamate (mGlu) receptor 1 (GRM1) has been shown to play an important role in neuronal cells by triggering, through calcium release from intracellular stores, various signaling pathways that finally modulate neuron excitability, synaptic plasticity, and mechanisms of feedback regulation of neurotransmitter release. Herein, we show that(More)
The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [3H]d-aspartate ([3H]D-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100microM) potentiated the K+(12mM)-evoked [3H]D-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic(More)
We describe the implementation of ASSIST, a programming environment for parallel and distributed programs. Its coordination language is based of the parallel skeleton model, extended with new features to enhance expressiveness, parallel software reuse, software component integration and interfacing to external resources. The compilation process and the(More)
We describe how the ASSIST parallel programming environment can be used to run parallel programs on collections of heterogeneous workstations and evaluate the scalability of one task-farm real application and a data-parallel benchmark, comparing the actual performance figures measured when using homogeneous and heterogeneous workstation clusters. We(More)
The ASSIST environment provides a high-level programming toolkit for the grid. ASSIST applications are described by means of a coordination language, which can express arbitrary graphs of modules. These modules (or a graph of them) may be enclosed in components specifically designed for the grid (GRID.it components). In this paper we describe how ASSIST(More)