Roberto R. Panepucci

Learn More
Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components. Furthermore, it is highly desirable to use silicon--the dominant material in the microelectronic industry--as the platform for such circuits. Photonic structures that bend, split,(More)
We present an experimental demonstration of fast all-optical switching on a silicon photonic integrated device by employing a strong light-confinement structure to enhance sensitivity to small changes in the refractive index. By use of a control light pulse with energy as low as 40 pJ, the optical transmission of the structure is modulated by more than 97%(More)
We experimentally demonstrate a novel silicon waveguide structure for guiding and confining light in nanometer-wide low-refractive-index material. The optical field in the low-index material is enhanced because of the discontinuity of the electric field at high-index-contrast interfaces. We measure a 30% reduction of the effective index of light propagating(More)
A set of low noise transimpedance amplifiers fabricated and characterized in CMOS and BiCMOS technologies are proposed in this work. Layout optimization, efficient modeling and bias point optimization are the techniques employed to reduce the input noise current density. The CMOS amplifiers were designed to work at 10 Gbps. The BiCMOS amplifiers, based on(More)
Design guide lines are given for developing SiGe HBT mm-wave d.c. coupled ultra-wide-band low noise monolithic amplifiers. An ultra wide band LNA and two mm-wave TIAs for 40 Gbps and 100 Gbps applications are proposed. The LNA has S21=11 dB and a 3-dB bandwidth of 88 GHz. The 40 Gbps TIA has a new topology, allowing a DC coupled performance, 54 dBΩ(More)
  • 1