Learn More
Using amplified fragment length polymorphisms (AFLPs), we analyzed the genetic structure of wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica at different geographical levels to test the hypothesis of asymmetric gene flow and investigate the origin of weedy populations. We showed both by phenetic and admixture population analyses(More)
Amplified fragment length polymorphisms (AFLPs) were used to evaluate genetic relationships within cowpea [Vigna unguiculata (L.) Walp.] and to assess the organization of its genetic diversity. Nei’s genetic distances were estimated for a total of 117 accessions including 47 domesticated cowpea (ssp. unguiculata var. unguiculata), 52 wild and weedy annuals(More)
This study focuses on the expansion of Phaseolus vulgaris in Europe. The pathways of distribution of beans into and across Europe were very complex, with several introductions from the New World that were combined with direct exchanges between European and other Mediterranean countries. We have analyzed here six chloroplast microsatellite (cpSSR) loci and(More)
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map(More)
Together with the knowledge of the population structure, a critical aspect for the planning of association and/or population genomics studies is the level of linkage disequilibrium (LD) that characterizes the species and the population used for such an analysis. We have analyzed the population structure and LD in wild and domesticated populations of(More)
We have studied the nucleotide diversity of common bean, Phaseolus vulgaris, which is characterized by two independent domestications in two geographically distinct areas: Mesoamerica and the Andes. This provides an important model, as domestication can be studied as a replicate experiment. We used nucleotide data from five gene fragments characterized by(More)
Molecular linkage maps are an important tool for gene discovery and cloning, crop improvement, further genetic studies, studies on diversity and evolutionary history, and cross-species comparisons. Linkage maps differ in both the type of marker and type of population used. In this study, gene-based markers were used for mapping in a recombinant inbred (RI)(More)
Common bean (Phaseolus vulgaris L.) was introduced in Europe from both Mesoamerican and Andean centres of origin. In this study, a collection including 544 accessions from all European regions showed that the Andean phaseolin types ‘T’ (45.6%) and ‘C’ (30.7%) prevailed over the Mesoamerican ones ‘S’ (23.7%), and accessions with cuboid seed shape (34.9%),(More)
Knowledge about the origins and evolution of crop species represents an important prerequisite for efficient conservation and use of existing plant materials. This study was designed to solve the ongoing debate on the origins of the common bean by investigating the nucleotide diversity at five gene loci of a large sample that represents the entire(More)
Chloroplast microsatellites (cpSSRs) provide a powerful tool to study the genetic variation and evolution of plants. We have investigated the usefulness of 39 primer pairs tagging cpSSR loci on a set of eight different genera of Leguminosae (Papilionoideae subfamily) and five species belonging to the genus Phaseolus. Thirty-six 'universal' primer pairs were(More)