Roberto Pagliarini

  • Citations Per Year
Learn More
Photosynthesis is the process used by plants, algae and some bacteria to obtain biochemical energy from sunlight. It is the most important process allowing life on earth. In this work, by applying the Log Gain theory of Metabolic P Systems, we define a mathematical model of an important photosynthetic phenomenon, called Non Photochemical Quenching (shortly(More)
The Intravenous Glucose Tolerance Test is an experimental procedure used to study the glucose-insulin endocrine regulatory system. An open problem is to construct a model representing simultaneously the entire regulative mechanism. In the past three decades, several models have appeared, but they have not escaped criticisms and drawbacks. In this paper, the(More)
A workflow for data analysis is introduced to synthesize flux regulation maps of a Metabolic P system from time series of data observed in laboratory. The procedure is successfully tested on a significant case study, the photosynthetic phenomenon called NPQ, which determines plant accommodation to environmental light. A previously introduced MP model of(More)
Inborn errors of metabolism (IEM) are genetic diseases caused by mutations in enzymes or transporters affecting specific metabolic reactions that cause a block in the physiological metabolic fluxes. Therapeutic treatment can be achieved either by decreasing the metabolic flux upstream of the block or by increasing the flux downstream of the block. The(More)
The study of efficient methods to deduce fluxes of biological reactions, by starting from experimental data, is necessary to understand the dynamics of a metabolic model, but it is also a central issue in systems biology. In this paper we report some partial results and related open problems regarding the efficient computation of regulation fluxes in(More)
Bistability, or more generally multistability, is an important recurring theme in biological systems. In particular, the discovery of bistability in signal pathways of genetic networks, prompts strong interest in understanding both the design and function of these networks. Therefore, modelling these systems is crucial to understand their behaviors, and(More)
Primary hyperoxaluria type I (PH1) is an autosomal-recessive inborn error of liver metabolism caused by alanine:glyoxylate aminotransferase (AGT) deficiency. In silico modeling of liver metabolism in PH1 recapitulated accumulation of known biomarkers as well as alteration of histidine and histamine levels, which we confirmed in vitro, in vivo, and in PH1(More)
Several human diseases are caused by metabolism defects. Discovering the mechanisms that govern the onset and progression of human metabolism-related diseases is not a straightforward process. Computational approaches, such as the flux balance analysis, have been successfully used to extract useful knowledge on the metabolic dysregulation processes from(More)