Roberto Navigli

Learn More
Word sense disambiguation (WSD) is the ability to identify the meaning of words in context in a computational manner. WSD is considered an AI-complete problem, that is, a task whose solution is at least as hard as the most difficult problems in artificial intelligence. We introduce the reader to the motivations for solving the ambiguity of words and provide(More)
a r t i c l e i n f o a b s t r a c t We present an automatic approach to the construction of BabelNet, a very large, wide-coverage multilingual semantic network. Key to our approach is the integration of lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition, Machine Translation is applied to enrich the resource with lexical(More)
Entity Linking (EL) and Word Sense Disambiguation (WSD) both address the lexical ambiguity of language. But while the two tasks are pretty similar, they differ in a fundamental respect: in EL the textual mention can be linked to a named entity which may or may not contain the exact mention, while in WSD there is a perfect match between the word form(More)
In this paper we present BabelNet – a very large, wide-coverage multilingual semantic network. The resource is automatically constructed by means of a methodology that integrates lexicographic and encyclopedic knowledge from WordNet and Wikipedia. In addition Machine Translation is also applied to enrich the resource with lexical information for all(More)
Word sense disambiguation (WSD) is traditionally considered an AI-hard problem. A break-through in this field would have a significant impact on many relevant Web-based applications, such as Web information retrieval, improved access to Web services, information extraction, etc. Early approaches to WSD, based on knowledge representation techniques, have(More)
We present a method and a tool, OntoLearn, aimed at the extraction of domain ontologies from Web sites, and more generally from documents shared among the members of virtual organizations. OntoLearn first extracts a domain terminology from available documents. Then, complex domain terms are semantically interpreted and arranged in a hierarchical fashion.(More)
Word sense disambiguation (WSD), the task of identifying the intended meanings (senses) of words in context, has been a long-standing research objective for natural language processing. In this paper, we are concerned with graph-based algorithms for large-scale WSD. Under this framework, finding the right sense for a given word amounts to identifying the(More)
In this paper we describe the English Lexical Substitution task for SemEval. In the task, annotators and systems find an alternative substitute word or phrase for a target word in context. The task involves both finding the synonyms and disambiguating the context. Participating systems are free to use any lexical resource. There is a subtask which requires(More)
One of the main obstacles to highperformance Word Sense Disambiguation (WSD) is the knowledge acquisition bottleneck. In this paper, we present a methodology to automatically extend WordNet with large amounts of semantic relations from an encyclopedic resource, namely Wikipedia. We show that, when provided with a vast amount of high-quality semantic(More)