Learn More
Quantification of cardiac chamber size, ventric-ular mass, and function ranks among the most clinically important and most frequently requested tasks of echocardiography. Standardization of chamber quantification has been an early concern in echocardiography and recommendations on how to measure such fundamental parameters are among the most often cited(More)
Echocardiographic imaging is ideally suited for the evaluation of cardiac mechanics because of its intrinsically dynamic nature. Because for decades, echocardiography has been the only imaging modality that allows dynamic imaging of the heart, it is only natural that new, increasingly automated techniques for sophisticated analysis of cardiac mechanics have(More)
ASE has gone green! Visit www.aseuniversity.org to earn free continuing medical education credit through an online activity related to this article. Certificates are available for immediate access upon successful completion of the activity. Nonmembers will need to join ASE to access this great member benefit!
Ultrasound technology has improved markedly in the past 10 to 15 years, prompting echocardi-ographers to extend its use in studying cardiac structure and function. New ultrasound equipment and techniques offer superior image quality, greater accuracy, and expanding capabilities. As a result, more and improved imaging modalities are available for evaluating(More)
AIMS Determination of left ventricular (LV) volumes and ejection fraction (EF) from two-dimensional echocardiographic (2DE) images is subjective, time-consuming, and relatively inaccurate because of foreshortened views and the use of geometric assumptions. Our aims were (1) to validate a new method for rapid, online measurement of LV volumes from real-time(More)
The American Society of Echocardiography has published guidelines relating to standards for training (and certification); performance; nomenclature and measurement; and quality improvement related to echocardiography. However, the society has not previously made recommendations about what constitutes the core variables – i.e., measurements and other(More)
BACKGROUND Mitral and aortic valves are known to be coupled via fibrous tissue connecting the two annuli. Previous studies evaluating this coupling have been limited to experimental animals using invasive techniques. The new matrix array transesophageal transducer provides high-resolution real-time 3D images of both valves simultaneously. We sought to(More)
Although 2-dimensional (2D) speckle tracking echocardiography has been shown to be useful in the assessment of regional left ventricular function, it is limited by the assumption that speckles can be tracked frame-to-frame within the imaging plane, even though the cardiac motion is 3-dimensional (3D). Our goal was to evaluate new 3D-speckle tracking(More)
BACKGROUND Late gadolinium enhancement (LGE) occurs at the right ventricular (RV) insertion point (RVIP) in patients with pulmonary hypertension (PH) and has been shown to correlate with cardiovascular magnetic resonance (CMR) derived RV indices. However, the prognostic role of RVIP-LGE and other CMR-derived parameters of RV function are not well(More)
We tested the feasibility of real-time three-dimensional (3D) echocardiographic (RT3DE) imaging to measure left heart volumes at different gravity during parabolic flight and studied the effects of lower body negative pressure (LBNP) as a countermeasure. Weightlessness-related changes in cardiac function have been previously studied during spaceflights(More)