Learn More
The dynamical behavior of a weakly diluted fully inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochasticlike regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase(More)
We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially(More)
The stability of the dynamical states characterized by a uniform firing rate (splay states) is analyzed in a network of globally coupled leaky integrate-and-fire neurons. This is done by reducing the set of differential equations to a map that is investigated in the limit of large network size. We show that the stability of the splay state depends crucially(More)
We investigate the onset of collective oscillations in a excitatory pulse-coupled network of leaky integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O. V. Popovych, Phys. Rev. E 71(More)
Spatially extended dynamical systems, namely coupled map lattices, driven by additive spatio-temporal noise are shown to exhibit stochastic synchronization. In analogy with low-dimensional systems, synchronization can be achieved only if the maximum Lyapunov exponent becomes negative for sufficiently large noise amplitude. Moreover, noise can suppress also(More)
The pioneering computer simulations of the energy relaxation mechanisms performed by Fermi, Pasta, and Ulam (FPU) can be considered as the first attempt of understanding energy relaxation and thus heat conduction in lattices of nonlinear oscillators. In this paper we describe the most recent achievements about the divergence of heat conductivity with the(More)
In this paper we show that a dynamical description of the protein folding process provides an effective representation of equilibrium properties and it allows for a direct investigation of the mechanisms ruling the approach towards the native configuration. The results reported in this paper have been obtained fora two-dimensional toy-model of aminoacid(More)
We report on the complex nature of the induced Martian magnetotail using simultaneous magnetic field and plasma measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Two case studies are analyzed from which we identify (1) repetitive loading and unloading of tail magnetic flux as the field magnitude changes dramatically,(More)