Learn More
The massive presence of silent members in online communities, the so-called <i>lurkers</i>, has long attracted the attention of researchers in social science, cognitive psychology, and computer-human interaction. However, the study of lurking phenomena represents an unexplored opportunity of research in data mining, information retrieval and related fields.(More)
Online socio-technical systems can be studied as proxy of the real world to investigate human behavior and social interactions at scale. Here we focus on Instagram, a media-sharing online platform whose popularity has been rising up to gathering hundred millions users. Instagram exhibits a mixture of features including social structure, social tagging and(More)
The massive presence of silent members in online communities, the so-called lurkers, has long attracted the attention of researchers in social science, cognitive psychology, and computer–human interaction. However, the study of lurking phenomena represents an unexplored opportunity of research in data mining, information retrieval and related fields. In(More)
Mining the silent members of an online community, also called lurkers, has been recognized as an important problem that accompanies the extensive use of online social networks (OSNs). Existing solutions to the ranking of lurkers can aid understanding the lurking behaviors in an OSN. However, they are limited to use only structural properties of the static(More)
An emerging trend in research on recommender systems is the design of methods capable of recommending packages instead of single items. The problem is challenging due to a variety of critical aspects, including context-based and user-provided constraints for the items constituting a package, but also the high sparsity and limited accessibility of the(More)
Mining the silent members, also called lurkers, of an online community has been recognized as an important problem that accompanies the extensive use of social networks. Existing solutions to the ranking of lurkers can aid understanding the lurking behaviors in social networks, however they ignore any information concerning the time dimension. In this work(More)
Lurkers are silent members of a social network (SN) who gain benefit from others' information without significantly giving back to the community. The study of lurking behaviors in SNs is nonetheless important, since these users acquire knowledge from the community, and as such they are social capital holders. Within this view, a major goal is to delurk such(More)