Learn More
Prototypal software algorithms for advanced spectral analysis of echographic images were developed to perform automatic detection of simulated tumor masses at two different pathological stages. Previously published works documented the possibility of characterizing macroscopic variation of mechanical properties of tissues through elastographic techniques,(More)
RATIONALE AND OBJECTIVES The aim of this study was to identify the optimal parameter configuration of a new algorithm for fully automatic segmentation of hepatic vessels, evaluating its accuracy in view of its use in a computer system for three-dimensional (3D) planning of liver surgery. MATERIALS AND METHODS A phantom reproduction of a human liver with(More)
Aim of the present work was to evaluate the performance of a novel fully automatic algorithm for 3D segmentation and volumetric reconstruction of liver vessel network from contrast-enhanced computed tomography (CECT) datasets acquired during routine clinical activity. Three anonymized CECT datasets were randomly collected and were automatically analyzed by(More)
OBJECTIVES To experimentally investigate the acoustical behavior of silica nanoparticles within conventional diagnostic ultrasound fields and to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable contrast agents. We also assessed the effectiveness of a novel method for automatic detection of(More)
Current imaging methods for catheter position monitoring during minimally invasive surgery do not provide an effective support to surgeons, often resulting in the choice of more invasive procedures. This study was conducted to demonstrate the feasibility of non-ionizing monitoring of endovascular devices through embedded quantitative ultrasound (QUS)(More)
We investigated the possible clinical feasibility and accuracy of an innovative ultrasound (US) method for diagnosis of osteoporosis of the spine. A total of 342 female patients (aged 51-60 y) underwent spinal dual X-ray absorptiometry and abdominal echographic scanning of the lumbar spine. Recruited patients were subdivided into a reference database used(More)
In recent years, intensive investigations have been undertaken to develop nanoparticle-based cancer targeting agents for various imaging modalities, including ultrasound. Thus, diagnostic paradigms are needed to correctly detect the presence of nanoparticles (NPs) in the anatomic districts. Furthermore, it would be desirable to have algorithms for the(More)
Aim of this work was to investigate the automatic echographic detection of an experimental drug delivery agent, halloysite clay nanotubes (HNTs), by employing an innovative method based on advanced spectral analysis of the corresponding "raw" radiofrequency backscatter signals. Different HNT concentrations in a low range (5.5-66 × 1010 part/mL, equivalent(More)
In the last decades, minimally invasive technologies have experienced a significant diffusion in various clinical specialties, finding their application in diagnosis and therapy of acute and chronic diseases. In particular early and effective cancer diagnosis is amongst the goals of recent studies focused on the improvement of innovative medical(More)
To improve vessel contrast in high-resolution susceptibility-based brain venography, an automatic phase contrast enhancing procedure is proposed, based on a new phase mask filter suitable for maximizing contrast of venous MR signals. The effectiveness of the new approach was assessed both on digital phantoms and on acquired MR human brain images, and then(More)