Roberto F. Leonarduzzi

Learn More
Scale invariance is a widely used concept to analyze real-world data from many different applications and multifractal analysis has become the standard corresponding signal processing tool. It characterizes data by describing globally and geometrically the fluctuations of local regularity, usually measured by means of the Hölder exponent. A major limitation(More)
Scale invariance and multifractal analysis constitute paradigms nowadays widely used for real-world data characterization. In essence, they amount to assuming power law behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The exponents of these power laws, the scaling exponents, are then measured and involved in classical(More)
Intrapartum fetal heart rate (FHR) constitutes a prominent source of information for the assessment of fetal reactions to stress events during delivery. Yet, early detection of fetal acidosis remains a challenging signal processing task. The originality of the present contribution are three-fold: multiscale representations and wavelet leader based(More)
Interpretation and analysis of intrapartum fetal heart rate, enabling early detection of fetal acidosis, remains a challenging signal processing task. Among the many strategies that were used to tackle this problem, scale-invariance and multifractal analysis stand out. Recently, a new and promising variant of multifractal analysis, based on p-leaders, has(More)
  • 1