Learn More
We demonstrate that two key theoretical objects used widely in computational neuroscience, the phase-resetting curve (PRC) from dynamics and the spike triggered average (STA) from statistical analysis, are closely related when neurons fire in a nearly regular manner and the stimulus is sufficiently small. We prove that the STA due to injected noisy current(More)
The phase-resetting curve (PRC) of a neural oscillator describes the effect of a perturbation on its periodic motion and is therefore useful to study how the neuron responds to stimuli and whether it phase locks to other neurons in a network. Combining theory, computer simulations and electrophysiological experiments we present a simple method for(More)
The brain is noisy. Neurons receive tens of thousands of highly fluctuating inputs and generate spike trains that appear highly irregular. Much of this activity is spontaneous - uncoupled to overt stimuli or motor outputs - leading to questions about the functional impact of this noise. Although noise is most often thought of as disrupting patterned(More)
Oscillations are a common feature of odor-evoked and spontaneous activity in the olfactory system in vivo and in vitro and are thought to play an important role in information processing and memory in a variety of brain areas. Theoretical and experimental studies have described several mechanisms by which oscillations can be generated and synchronized.(More)
Genetic disorders arising from copy number variations in the ERK (extracellular signal-regulated kinase) MAP (mitogen-activated protein) kinases or mutations in their upstream regulators that result in neuro-cardio-facial-cutaneous syndromes are associated with developmental abnormalities, cognitive deficits, and autism. We developed murine models of these(More)
We have investigated the effect of the phase response curve on the dynamics of oscillators driven by noise in two limit cases that are especially relevant for neuroscience. Using the finite element method to solve the Fokker-Planck equation we have studied (i) the impact of noise on the regularity of the oscillations quantified as the coefficient of(More)
We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor(More)
Combining computer simulations and electrophysiological experiments we have studied the effect of noise on the responses of olfactory neurons. In particular, we first investigated the reliability of mitral cell responses and found, as previously observed in other neural systems, that, in the presence of background noise, mitral cells reliably respond to(More)
Use of spike timing to encode information requires that neurons respond with high temporal precision and with high reliability. Fast fluctuating stimuli are known to result in highly reproducible spike times across trials, whereas constant stimuli result in variable spike times. Here, we first studied mathematically how spike-time reliability depends on the(More)
Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well.(More)