Learn More
The molecular basis for epileptogenesis remains poorly defined, but repeated or prolonged seizures can cause altered hippocampal N-methyl D-aspartate receptor (NMDAR) stoichiometry, loss of hippocampal neurons, and aberrant mossy fiber sprouting. Using the muscarinic receptor 1 (m1R) agonist, pilocarpine (PILO), in hippocampal cell cultures we explored the(More)
Hippocampal sclerosis, the main pathological sign of chronic temporal lobe epilepsy (TLE), is associated with oxidative injury, altered N-methyl d-aspartate receptor (NMDAR) stoichiometry, and loss of hippocampal neurons. However, the mechanisms that drive the chronic progression of TLE remain elusive. Our previous studies have shown that NADPH oxidase(More)
AIMS The study of the intracellular oxido-reductive (redox) state is of extreme relevance to the dopamine (DA) neurons of the substantia nigra pars compacta. These cells possess a distinct physiology intrinsically associated with elevated reactive oxygen species production, and they selectively degenerate in Parkinson's disease under oxidative stress(More)
Human cytomegalovirus (HCMV) infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced(More)
Mutations in leucine-rich repeated kinase 2 (LRRK2) cause autosomal dominant late-onset Parkinson's disease (PD), and the G2019S mutation in the kinase domain of LRRK2 is the most common genetic cause of familial PD. Enhanced kinase activity of G2019S LRRK2 is a suspected mechanism for carriers to develop PD but pathophysiological function of G2019S LRRK2(More)
While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall(More)
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on(More)
Repeated seizures are often associated with development of refractory chronic epilepsy, the most common form of which is temporal lobe epilepsy. G-protein-coupled cannabinoid receptors (CB1 and CB2 receptors) regulate neuronal excitability and have been shown to mediate acute anticonvulsant effects of cannabinoids in animal models. However, the potential of(More)
Oxidant molecules generated during neuronal metabolism appear to play a significant role in the processes of aging and neurodegeneration. Increasing experimental evidence suggests the noteworthy relevance of the intracellular reduction-oxidation (redox) balance for the dopaminergic (DA-ergic) neurons of the substantia nigra pars compacta. These cells(More)
KEY POINTS Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.1 channel modulation is dependent on calcineurin, a Ca(2+) -activated phosphatase. We show that intracellular Zn(2+) induces a significant increase in(More)