Roberto Di Maio

Learn More
The molecular basis for epileptogenesis remains poorly defined, but repeated or prolonged seizures can cause altered hippocampal N-methyl D-aspartate receptor (NMDAR) stoichiometry, loss of hippocampal neurons, and aberrant mossy fiber sprouting. Using the muscarinic receptor 1 (m1R) agonist, pilocarpine (PILO), in hippocampal cell cultures we explored the(More)
Glucocorticoids (GCs) are used to treat pregnant women at risk for preterm delivery; however, prenatal exposure to GCs may trigger adverse neurological side effects due to reduced neural progenitor cell (NPC) proliferation. Whereas many established cell-cycle regulators impact NPC proliferation, other signaling molecules, such as the gap junction protein(More)
Human cytomegalovirus (HCMV) infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced(More)
α-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson's disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this(More)
Hippocampal sclerosis, the main pathological sign of chronic temporal lobe epilepsy (TLE), is associated with oxidative injury, altered N-methyl d-aspartate receptor (NMDAR) stoichiometry, and loss of hippocampal neurons. However, the mechanisms that drive the chronic progression of TLE remain elusive. Our previous studies have shown that NADPH oxidase(More)
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on(More)
Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) has been implicated in Parkinson's disease (PD) and is present in neurofibrillary tangles or Lewy bodies. However, the molecular basis for UCH-L1s involvement in proteinacious fibril formation is still elusive, especially in regard to the pathogenicity of the I93M mutation. Here we show that modification of(More)
AIMS The study of the intracellular oxido-reductive (redox) state is of extreme relevance to the dopamine (DA) neurons of the substantia nigra pars compacta. These cells possess a distinct physiology intrinsically associated with elevated reactive oxygen species production, and they selectively degenerate in Parkinson's disease under oxidative stress(More)
Mutations in leucine-rich repeated kinase 2 (LRRK2) cause autosomal dominant late-onset Parkinson's disease (PD), and the G2019S mutation in the kinase domain of LRRK2 is the most common genetic cause of familial PD. Enhanced kinase activity of G2019S LRRK2 is a suspected mechanism for carriers to develop PD but pathophysiological function of G2019S LRRK2(More)
KEY POINTS Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.1 channel modulation is dependent on calcineurin, a Ca(2+) -activated phosphatase. We show that intracellular Zn(2+) induces a significant increase in(More)