Learn More
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We(More)
Pain is a multidimensional phenomenon with sensory, affective, and autonomic components. Here, we used parametric functional magnetic resonance imaging (fMRI) to correlate regional brain activity with autonomic responses to (i) painful stimuli and to (ii) anticipation of pain. The autonomic parameters used for correlation were (i) skin blood flow (SBF) and(More)
Sodium channel blockers are known for reducing pain and hyperalgesia. In the present study we investigated changes in cerebral processing of secondary mechanical hyperalgesia induced by pharmacological modulation with systemic lidocaine. An experimental electrical pain model was used in combination with functional magnetic resonance imaging. After induction(More)
It is increasingly recognized that pain-induced plasticity may not only provoke sensory gain (hyperalgesia), but also sensory decline, i.e. hypoesthesia and hypoalgesia. We investigated perceptual changes by conditioning electrical stimulation of peptidergic C-nociceptors differing in stimulation frequencies and duty cycles at the left forearm. Four noxious(More)
Headaches can be evoked by activation of meningeal nociceptors, but an involvement of pericranial tissues is debated. We aimed to examine a possible extracranial innervation by meningeal afferents in the rat. For in vivo neuronal tracing, dextran amines were applied to the periosteum underlying the temporal muscle. Labeling was observed 2 days later in the(More)
Calcitonin gene-related peptide (CGRP) is regarded as a key mediator in the generation of primary headaches. CGRP receptor antagonists reduce migraine pain in clinical trials and spinal trigeminal activity in animal experiments. The site of CGRP receptor inhibition causing these effects is debated. Activation and inhibition of CGRP receptors in the(More)
OBJECTIVE To reinvestigate the innervation pattern of the dura mater of rat and human middle cranial fossa, the morpho-functional substrate of headache generation, and adjacent extracranial tissues with neuronal in vitro tracing. BACKGROUND This study was initiated by recent structural and functional findings of meningeal afferent fibers which innervate(More)
The passage of an action potential along a peripheral axon modulates the conduction velocity of subsequent action potentials. In C-neurones with unmyelinated axons repetitive activity progressively slows axonal conduction velocity and in microneurographic recordings from healthy human subjects the magnitude of this slowing can be used to predict the(More)
Nitric oxide (NO) is suggested to play a causative role in the pathogenesis of primary headaches. Infusion of NO donors can trigger headache attacks, and products of NO metabolism are found to be increased in the cranial circulation in patients suffering from such headaches. To examine if NO is involved in mediating and maintaining spinal trigeminal(More)
Nitric oxide is thought to control transmitter release and neuronal activity in the spinal dorsal horn and the spinal trigeminal nucleus, where nociceptive information from extra- and intracranial tissues is processed. Extracellular impulse activity was recorded from neurons in the rat spinal trigeminal nucleus with afferent input from the cranial dura(More)