Roberto Contestabile

Learn More
The three-dimensional structure of glutamate-1-semialdehyde aminomutase (EC, an alpha2-dimeric enzyme from Synechococcus, has been determined by x-ray crystallography using heavy atom derivative phasing. The structure, refined at 2.4-A resolution to an R-factor of 18.7% and good stereochemistry, explains many of the enzyme's unusual specificity and(More)
Vitamin B(6) is a generic term referring to pyridoxine, pyridoxamine, pyridoxal and their related phosphorylated forms. Pyridoxal 5'-phosphate is the catalytically active form of vitamin B(6), and acts as cofactor in more than 140 different enzyme reactions. In animals, pyridoxal 5'-phosphate is recycled from food and from degraded B(6)-enzymes in a(More)
Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and(More)
Serine hydroxymethyltransferase (SHMT) is a member of the fold type I family of vitamin B6-dependent enzymes, a group of evolutionarily related proteins that share the same overall fold. The reaction catalysed by SHMT, the transfer of Cbeta of serine to tetrahydropteroylglutamate (H4PteGlu), represents in the cell an important link between the breakdown of(More)
A flexible loop (residues 328-339), presumably covering the active site upon substrate binding, has been revealed in 3,4-dihydroxyphenylalanine decarboxylase by means of kinetic and structural studies. The function of tyrosine 332 has been investigated by substituting it with phenylalanine. Y332F displays coenzyme content and spectroscopic features(More)
L-threonine aldolases (L-TAs) represent a family of homologous pyridoxal 5'-phosphate-dependent enzymes found in bacteria and fungi, and catalyse the reversible cleavage of several L-3-hydroxy-α-amino acids. L-TAs have great biotechnological potential, as they catalyse the formation of carbon-carbon bonds, and therefore may be exploited for the bioorganic(More)
The biologically active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor in over 160 enzyme activities involved in a number of metabolic pathways, including neurotransmitter synthesis and degradation. In humans, PLP is recycled from food and from degraded PLP-dependent enzymes in a salvage pathway requiring the action of pyridoxal kinase,(More)
Cyclosporin A, a cyclic peptide produced by the fungus Tolypocladium inflatum, is a widely employed immunosuppressant drug. Its biosynthesis is strictly dependent on the action of the pyridoxal 5'-phosphate-dependent enzyme alanine racemase, which produces the d-alanine incorporated in the cyclic peptide. This enzyme has a different fold with respect to(More)
Crystal structures of human and rabbit cytosolic serine hydroxymethyltransferase have shown that Tyr65 is likely to be a key residue in the mechanism of the enzyme. In the ternary complex of Escherichia coli serine hydroxymethyltransferase with glycine and 5-formyltetrahydrofolate, the hydroxyl of Tyr65 is one of four enzyme side chains within(More)
The vitamin B(6)-derived pyridoxal 5'-phosphate (PLP) is the cofactor of enzymes catalyzing a large variety of chemical reactions mainly involved in amino acid metabolism. These enzymes have been divided in five families and fold types on the basis of evolutionary relationships and protein structural organization. Almost 1.5% of all genes in prokaryotes(More)