Roberto Caciuffo

Learn More
We present the results of resonant x-ray scattering experiments on KCuF3. Structurally forbidden reflections, corresponding to magnetic and 3d-orbital long-range order, have been observed. Integrated intensities have been measured as a function of incident energy, polarization, azimuthal angle, and temperature. The results give evidence for a strong(More)
The physical properties of the first In analog of the PuMGa(5) (M = Co, Rh) family of superconductors, PuCoIn(5), are reported. With its unit cell volume being 28% larger than that of PuCoGa(5), the characteristic spin-fluctuation energy scale of PuCoIn(5) is three to four times smaller than that of PuCoGa(5), which suggests that the Pu 5f electrons are in(More)
Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the(More)
MnAs exhibits a first-order phase transition from a ferromagnetic, high-spin metal hexagonal phase to a paramagnetic, lower-spin insulator orthorhombic phase at T(C)=313 K. Here, we report the results of neutron diffraction experiments showing that an external magnetic field, B, stabilizes the hexagonal phase above T(C). The phase transformation is(More)
Syntheses of the bimetallic uranium(III) and neptunium(III) complexes [(UI)(2)(L)], [(NpI)(2)(L)], and [{U(BH(4))}(2)(L)] of the Schiff-base pyrrole macrocycles L are described. In the absence of single-crystal structural data, fitting of the variable-temperature solid-state magnetic data allows the prediction of polymeric structures for these compounds in(More)
By using single crystals and polarized neutrons, we have measured the orbital and spin components of the microscopic magnetization in the paramagnetic state of NpCoGa(5) and PuCoGa(5). The microscopic magnetization of NpCoGa(5) agrees with that observed in bulk susceptibility measurements and the magnetic moment has spin and orbital contributions as(More)
Discrete molecular compounds that exhibit both magnetization hysteresis and slow magnetic relaxation below a characteristic 'blocking' temperature are known as single-molecule magnets. These are promising for applications including memory devices and quantum computing, but require higher spin-inversion barriers and hysteresis temperatures than currently(More)
The magnetic properties of the triangular molecular nanomagnet [UO2L]3 (L = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate) have been investigated through electron paramagnetic resonance spectroscopy, high-field magnetization and susceptibility measurements. The experimental findings are well reproduced by a microscopic model including exchange interactions(More)