Roberto C. Mancini

Learn More
The time-dependent gradient structure of a laser-compressed, high-energy-density plasma has been determined using a method based on the simultaneous analysis of time-resolved x-ray monochromatic images and x-ray line spectra from Ar-doped D2 implosion cores. The analysis self-consistently determines the temperature and density gradients that yield the best(More)
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell(More)
Modeling the Stark broadening of spectral lines in plasmas is a complex problem. The problem has a long history, since it plays a crucial role in the interpretation of the observed spectral lines in laboratories and astrophysical plasmas. One difficulty is the characterization of the emitter's environment. Although several models have been proposed over the(More)
Nearly a century ago it was recognized that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models. A particular problem arose when refined photosphere spectral analysis led(More)
We use a parallel multi-objective genetic algorithm to drive a search and reconstruction spectroscopic analysis of plasma gradients in inertial confinement fusion (ICF) implosion cores. In previous work, we had shown that our serial multi-objective Genetic Algorithm was a good method to solve two-criteria X-ray spectroscopy diagnostics problems. However,(More)
Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150–300 eV temperature range is particularly interesting. The opacity models are complex and experimental(More)
We present a modeling study of x-ray line polarization in plasmas driven by high-intensity, ultrashort duration pulsed lasers. Electron kinetics simulations of these transient and nonequilibrium plasmas predict non-Maxwellian and anisotropic electron distribution functions. Under these conditions, the magnetic sublevels within fine structure levels can be(More)
Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately(More)
We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 microm in diameter, 27 microm wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for(More)