Learn More
We studied the temperature dependence of the absorption coefficient of amorphous SiO2 in the range from 8 to 17.5 eV obtained by Kramers-Kronig dispersion analysis of reflectivity spectra. We demonstrate the main excitonic resonance at 10.4 eV to feature a close Lorentzian shape redshifting with increasing temperature. This provides a strong evidence of(More)
In a recent work (Buscarino et al 2009 Phys. Rev. B 80 094202), by studying the properties of the (29)Si hyperfine structure of the E'(γ) point defect, we have proposed a model able to describe quantitatively the densification process taking place upon electron irradiation in amorphous SiO(2) (a-SiO(2)). In particular, we have shown that it proceeds(More)
We report an experimental study by photoluminescence, optical absorption and Electron Paramagnetic Resonance measurements on the effects of exposure of Ge-doped amorphous SiO2 to gamma ray radiation at room temperature. We have evidenced that irradiation at doses of the order of 1 MGy is able to generate Ge-related defects, recognizable from their optical(More)
Matrix isolation is a method which plays a key role in isolating and characterizing highly reactive molecular radicals. However, the isolation matrices, usually composed of noble gases or small diamagnetic molecules, are stable only at very low temperatures, as they begin to desegregate even above a few tens of Kelvin. Here we report on the successful(More)
We report time-resolved photoluminescence spectra of point defects in amorphous silicon dioxide (silica), in particular the decay kinetics of the emission signals of extrinsic Oxygen Deficient Centres of the second type from singlet and directly-excited triplet states are measured and used as a probe of structural inhomogeneity. Luminescence activity in(More)
Generation of the Si dangling bond defect in amorphous SiO(2) (E' centre) induced by tunable pulsed UV laser radiation was investigated by in situ optical absorption measurements. The defect generation efficiency peaks when the photon energy equals ∼5.1 eV, it depends quadratically on laser intensity and is correlated with the native linear absorption due(More)
The selective annealing of point defects with different activation energies is studied, by performing sequences of thermal treatments on gamma irradiated silica samples in the temperature range 300-450 °C. Our experiments show that the dependence on time of the concentration of two irradiation induced point defects in silica, named ODC(II) (standing for(More)
We report nanosecond time-resolved photoluminescence measurements on the isoelectronic series of oxygen deficient centers in amorphous silica related to silicon, germanium and tin atoms, which are responsible of fluorescence activities at approximately 4 eV under excitation at approximately 5 eV. The dependence of the first moment of their emission band on(More)
We describe a transputer-based system suitable for accurate measurements of single-fiber electromyographic jitter. It consists of a conventional electromyograph, a home-made interface and a commercially available transputer-based board installed within a PC/AT compatible. Taking advantage of the concurrent operation of two transputer modules, the system(More)
We perform time-resolved photoluminescence measurements on point defects in amorphous silicon dioxide (silica). In particular, we report data on the decay kinetics of the emission signals of extrinsic oxygen deficient centres of the second type from singlet and directly excited triplet states, and we use them as a probe of structural inhomogeneity.(More)