#### Filter Results:

#### Publication Year

1989

2012

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Roberto Artuso, Stéphane Bovet, André Streilein
- 2003

The Swiss Federal Office of Topography is leading a project for the determination of correct agricultural surfaces. As a part of this project, a Digital Terrain Model and a Digital Surface Model is being generated using airborne laser scanning methods. These two models must achieve a height accuracy of 50cm and a mean density of 1 point per m 2. One of the… (More)

- Roberto Artusotg, Predrag CvitanoviCt, R Artuso, P CvitanoviC
- 1989

The strange sets which arise in deterministic low dimensional dynamical systems are analyzed in terms of (unstable) cycles and their eigenvalues. The general formalism of cycle expansions is introduced and its convergence discussed .

- Predrag Cvitanović, Roberto Artuso, Gábor Vattay, Niall Whelan
- 2006

- Roberto Artuso, Erik Aurell, Predrag Cvitanovi
- 1990

Cycle expansions are applied to a series of low dimensional dynamically generated strange sets: the skew Ulam map, the period-doubling repeller, the H enon-type strange sets and the irrational winding set for circle maps. These illustrate various aspects of the cycle expansion technique; convergence of the curvature expansions, approximations of generic… (More)

We compute the decay of the autocorrelation function of the observable |v x | in the Sinai billiard and of the observable v x in the associated Lorentz gas with an approximation due to Baladi, Eckmann and Ruelle. We consider the standard configuration where the disks is centered inside a unit square. The asymptotic decay is found to be C(t) ∼ c(R)/t. An… (More)

We establish a deterministic technique to investigate transport moments of arbitrary order. The theory is applied to the analysis of different kinds of intermittent one-dimensional maps and the Lorentz gas with infinite horizon: the typical appearance of phase transitions in the spectrum of transport exponents is explained. Periodic orbit theory of strongly… (More)

In a generic dynamical system chaos and regular motion coexist side by side, in different parts of the phase space. The border between these, where trajectories are neither unstable nor stable but of marginal stability, manifests itself through intermittency, dynamics where long periods of nearly regular motions are interrupted by irregular chaotic bursts.… (More)

In this work we applied to bidimensional chaotic maps the numerical method proposed by Ginelli et al. [1] that allows to calculate in each point of an orbit the vectors tangent to the (stable/unstable) invariant manifolds of the system, i.e. the so called covariant Lyapunov vectors (CLV); through this knowledge it is possible to calculate the transversal… (More)

- Roberto Artuso, Lucia Cavallasca, Giampaolo Cristadoro
- 2005

We consider a deterministic realization of Parrondo games, and use periodic orbit theory to analyze their asymptotic behavior.