Learn More
The Swiss Federal Office of Topography is leading a project for the determination of correct agricultural surfaces. As a part of this project, a Digital Terrain Model and a Digital Surface Model is being generated using airborne laser scanning methods. These two models must achieve a height accuracy of 50cm and a mean density of 1 point per m 2. One of the(More)
Cycle expansions are applied to a series of low dimensional dynamically generated strange sets: the skew Ulam map, the period-doubling repeller, the H enon-type strange sets and the irrational winding set for circle maps. These illustrate various aspects of the cycle expansion technique; convergence of the curvature expansions, approximations of generic(More)
We compute the decay of the autocorrelation function of the observable |v x | in the Sinai billiard and of the observable v x in the associated Lorentz gas with an approximation due to Baladi, Eckmann and Ruelle. We consider the standard configuration where the disks is centered inside a unit square. The asymptotic decay is found to be C(t) ∼ c(R)/t. An(More)
We claim that looking at probability distributions of finite time largest Lyapunov exponents, and more precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative estimates of polynomial decay rates of time correlations and Poincaré recurrences in the-quite-delicate case of dynamical systems with weak(More)
In this work we applied to bidimensional chaotic maps the numerical method proposed by Ginelli et al. [1] that allows to calculate in each point of an orbit the vectors tangent to the (stable/unstable) invariant manifolds of the system, i.e. the so called covariant Lyapunov vectors (CLV); through this knowledge it is possible to calculate the transversal(More)