Roberto A Steiner

Learn More
This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction(More)
One of the most important aspects of macromolecular structure refinement is the use of prior chemical knowledge. Bond lengths, bond angles and other chemical properties are used in restrained refinement as subsidiary conditions. This contribution describes the organization and some aspects of the use of the flexible and human/machine-readable dictionary of(More)
HIV-1 and other enveloped viruses can be restricted by a host cellular protein called BST2/tetherin that prevents release of budded viruses from the cell surface. Mature BST2 contains a small cytosolic region, a predicted transmembrane helix, and an extracellular domain with a C-terminal GPI anchor. To advance understanding of BST2 function, we have(More)
In the sarcomeric M-band, the giant ruler proteins titin and obscurin, its small homologue obscurin-like-1 (obsl1), and the myosin cross-linking protein myomesin form a ternary complex that is crucial for the function of the M-band as a mechanical link. Mutations in the last titin immunoglobulin (Ig) domain M10, which interacts with the N-terminal(More)
Whereas the majority of O2-metabolizing enzymes depend on transition metal ions or organic cofactors for catalysis, a significant number of oxygenases and oxidases neither contain nor require any cofactor. Among the cofactor-independent oxidases, urate oxidase, coproporphyrinogen oxidase, and formylglycine-generating enzyme are of mechanistic as well as(More)
Quercetin 2,3-dioxygenase is a copper-containing enzyme that catalyzes the insertion of molecular oxygen into polyphenolic flavonols. Dioxygenation catalyzed by iron-containing enzymes has been studied extensively, but dioxygenases employing other metal cofactors are poorly understood. We determined the crystal structure of quercetin 2,3-dioxygenase at 1.6(More)
Quercetin 2,3-dioxygenase (2,3QD) is a copper-containing dioxygenase that catalyses the oxidation of the flavonol quercetin to 2-protocatechuoylphloroglucinol carboxylic acid with concomitant production of carbon monoxide. In contrast to iron dioxygenases, very little is known about copper dioxygenases. We have characterized 2,3QD from the fungus(More)
Quercetin 2,3-dioxygenase (2,3QD) is the only firmly established copper dioxygenase known so far. Depending solely on a mononuclear Cu center, it catalyzes the breakage of the O-heterocycle of flavonols, producing more easily degradable phenolic carboxylic acid ester derivatives. In the enzymatic process, two CC bonds are broken and concomitantly carbon(More)
The crystal structures of the copper-dependent Aspergillus japonicus quercetin 2,3-dioxygenase (2,3QD) complexed with the inhibitors diethyldithiocarbamate (DDC) and kojic acid (KOJ) are reported at 1.70 and 2.15 A resolution, respectively. Both inhibitors asymmetrically chelate the metal center and assume a common orientation in the active site cleft.(More)
Quercetin 2,3-dioxygenase (2,3QD) is a mononuclear copper-dependent dioxygenase which catalyzes the cleavage of the heterocyclic ring of the flavonol quercetin (5,7,3',4'-tetrahydroxy flavonol) to produce 2-protocatechuoyl-phloroglucinol carboxylic acid and carbon monoxide. In this study, X-ray absorption spectroscopy has been used to characterize the local(More)