Learn More
Molecules comprising a large number of coupled paramagnetic centers are attracting much interest because they may show properties which are intermediate between those of simple paramagnets and classical bulk magnets and provide unambiguous evidence of quantum size effects in magnets. To date, two cluster families, usually referred to as Mn12 and Fe8, have(More)
The first family of rare-earth-based single chain magnets is presented. Compounds of general formula [M(hfac)3(NITPhOPh)], where M = Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is the nitronyl-nitroxide radical (2,4'-benzoxo-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been structurally characterized and found to be isostructural. The characterization(More)
In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when(More)
Fabrication of molecular nanostructures and control of the molecular properties at the nanoscale is at the basis of the development of innovative single molecule devices. [ 1 ] Particularly active is the research for the organization of single molecule magnets (SMMs) that have been proposed as ideal candidates for the development of molecular spintronics(More)
Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and(More)
Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on spin transport. Going beyond investigations focused on physisorbed SMMs, in this work the robust grafting of terbium(III) bis(phthalocyaninato) complexes to a silicon surface from a diluted solution is achieved by(More)
A fundamental step towards atomic- or molecular-scale spintronic devices has recently been made by demonstrating that the spin of an individual atom deposited on a surface, or of a small paramagnetic molecule embedded in a nanojunction, can be externally controlled. An appealing next step is the extension of such a capability to the field of information(More)
We present measurements of the magnetic properties of thin film TbPc(2) single-molecule magnets evaporated on a gold substrate and compare them to those in bulk. Zero-field muon spin relaxation measurements were used to determine the molecular spin fluctuation rate of TbPc(2) as a function of temperature. At low temperature, we find that the fluctuations in(More)
Addressing individual bistable magnetic molecules, known as Single Molecule Magnets (SMMs), is a fascinating goal at the borderline between molecular magnetism and spin electronics. This tutorial review focuses on the first step towards single-molecule experiments, namely the organization of SMMs on surfaces. Both preparation and characterization of(More)