Roberta Di Fonte

  • Citations Per Year
Learn More
Ptpn22 is one of the most potent autoimmunity predisposing genes and strongly associates with type 1 diabetes (T1D). Previous studies showed that non-obese diabetic mice with reduced expression levels of Ptpn22 are protected from T1D due to increased number of T regulatory (Treg) cells. We report that lack of Ptpn22 exacerbates virally-induced T1D in female(More)
Restoration of endogenous insulin production by islet transplantation is considered a curative option for patients with type 1 diabetes. However, recurrent autoimmunity and alloreactivity cause graft rejection hindering successful transplantation. Here we tested whether transplant tolerance to allogeneic islets could be achieved in non-obese diabetic (NOD)(More)
PTPN22 (protein tyrosine phosphatase non receptor 22) encodes a tyrosine phosphatase that functions as a key regulator of immune homeostasis. In particular, PTPN22 inhibits T-cell receptor signaling and selectively promotes type I interferon responses in myeloid cells. To date, there is little information on the CD8 T-cell-intrinsic role of PTPN22 in(More)
A genetic variant of the protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with a wide range of autoimmune diseases; however, the reasons behind its prevalence in the general population remain not completely understood. Recent evidence highlights an important role of autoimmune susceptibility genetic variants in conferring resistance(More)
PI3K is highly expressed in leukocytes and is required for a diverse range of cell functions including proliferation, cell survival, degranulation, vesicular trafficking and cell migration.We and others recently described a limited number of patients affected with primary immunodeficiency (PID) caused by monoallelic mutations in phosphoinositide 3-kinase(More)
  • 1