Learn More
To investigate functions of the homeodomain-containing transcription factor Nkx3.1 a null mutation was generated by targeted gene disruption introducing the bacterial LacZ gene as reporter into the locus. In addition to defects in duct morphogenesis of the prostate and bulbourethral gland displaying progressive epithelial hyperplasia and reduced ductal(More)
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced(More)
Myf-5, a member of the family of four muscle-specific basic helix-loop-helix (bHLH) transcription factors is the first to be expressed in somites, branchial arches, and limb buds during prenatal mouse development. However, little is known about control mechanisms which actually regulate Myf-5 gene activity within these various muscle-forming domains. To(More)
The homeodomain transcription factor Nkx2-3 is expressed in gut mesenchyme and spleen of embryonic and adult mice. Targeted inactivation of the Nkx2-3 gene results in severe morphological alterations of both organs and early postnatal lethality in the majority of homozygous mutants. Villus formation in the small intestine appears considerably delayed in(More)
We have systematically developed single cell-inoculated suspension cultures of human embryonic stem cells (hESC) in defined media. Cell survival was dependent on hESC re-aggregation. In the presence of the Rho kinase inhibitor Y-27632 (Ri) only approximately 44% of the seeded cells were rescued, but an optimized heat shock treatment combined with Ri(More)
Many applications of human embryonic stem cells (hESCs) will require fully defined growth and differentiation conditions including media devoid of fetal calf serum. To identify factors that control lineage differentiation we have analyzed a serum-free (SF) medium conditioned by the cell line END2, which efficiently induces hESCs to form cardiomyocytes.(More)
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a(More)
Cardiomyocyte transplantation could offer a new approach to replace scarred, nonfunctional myocardium in a diseased heart. Clinical application of this approach would require the ability to generate large numbers of donor cells. The purpose of this study was to develop a scalable, robust, and reproducible process to derive purified cardiomyocytes from(More)
BACKGROUND Current efforts to direct differentiation of human embryonic stem cells (hESC) into a particular cell lineage usually lead to a heterogeneous cell population with only a fraction of the desired cell type present. We show the generation of an essentially pure population of human cardiomyocytes from hESC using lineage selection. METHODS A(More)