Robert X. Gao

Learn More
This paper presents a sensor fusion method for assessing physical activity (PA) of human subjects, based on support vector machines (SVMs). Specifically, acceleration and ventilation measured by a wearable multisensor device on 50 test subjects performing 13 types of activities of varying intensities are analyzed, from which activity type and energy(More)
The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classification. This paper presents a feature selection scheme based on(More)
Non-invasive estimation of minute ventilation is important for quantifying the intensity of physical activity of individuals. In this paper, several improved regression models are presented, based on the measurement of chest and abdomen movements from sensor belts worn by subjects (n = 50) engaged in 14 types of physical activity. Five linear models(More)
Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA(More)
The increasing complexity of manufacturing machines and the continued demand for high productivity have led to growing applications of sensor networks to enable more reliable, timely, and comprehensive information gathering from the machines being monitored. An effective and efficient utilization of sensor networks requires new sensor designs that enable(More)