Learn More
1. Neurons in the dorsomedial region of the medial superior temporal area (MSTd) have large receptive fields that include the fovea, are directionally selective for moving visual stimuli, prefer the motion of large fields to small spots, and respond to rotating and expanding patterns of motion as well as frontal parallel planar motion. These characteristics(More)
1. Among the multiple extrastriate visual areas in monkey cerebral cortex, several areas within the superior temporal sulcus (STS) are selectively related to visual motion processing. In this series of experiments we have attempted to relate this visual motion processing at a neuronal level to a behavior that is dependent on such processing, the generation(More)
1. We investigated cells in the middle temporal visual area (MT) and the medial superior temporal area (MST) that discharged during smooth pursuit of a dim target in an otherwise dark room. For each of these pursuit cells we determined whether the response during pursuit originated from visual stimulation of the retina by the pursuit target or from an(More)
1. We studied the role of the superior colliculus (SC) in the control of visual fixation by recording from cells in the rostral pole of the SC in awake monkeys that were trained to perform fixation and saccade tasks. 2. We identified a subset of neurons in three monkeys that we refer to as fixation cells. These cells increased their tonic discharge rate(More)
1. We tested the hypothesis that a subset of neurons, which we have referred to as fixation cells, located within the rostral pole of the monkey superior colliculus (SC) controls the generation of saccadic eye movements. We altered the activity of these neurons with either electrical stimulation or GABAergic drugs. 2. An increase in the activity of fixation(More)
1. In the monkey superior colliculus (SC), the activity of most saccade-related neurons studied so far consists of a burst of activity in a population of cells at one place on the SC movement map. In contrast, recent experiments in the cat have described saccade-related activity as a slow increase in discharge before saccades followed by a hill of activity(More)
Human vision is stable and continuous in spite of the incessant interruptions produced by saccadic eye movements. These rapid eye movements serve vision by directing the high resolution fovea rapidly from one part of the visual scene to another. They should detract from vision because they generate two major problems: displacement of the retinal image with(More)
1. In the companion paper we described two classes of cells in the monkey superior colliculus (SC) that were related to saccade generation, buildup cells and burst cells, which fell into two functional sublayers within the intermediate layers of the SC. Fixation cells in the rostral SC were deemed to be part of the buildup cell layer. The buildup cells had(More)
Complex visual scenes require that a target for an impending saccadic eye movement be selected from a larger number of possible targets. We investigated whether changing the probability that a visual stimulus would be selected as the target for a saccade altered activity of monkey superior colliculus (SC) neurons in two experiments. First, we changed the(More)