Robert Willows

Learn More
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land(More)
In chlorophyll biosynthesis, insertion of Mg(2+) into protoporphyrin IX is catalysed in an ATP-dependent reaction by a three-subunit (BchI, BchD and BchH) enzyme magnesium chelatase. In this work we present the three-dimensional structure of the ATP-binding subunit BchI. The structure has been solved by the multiple wavelength anomalous dispersion method(More)
Magnesium-protoporphyrin chelatase lies at the branch point of the heme and (bacterio)chlorophyll biosynthetic pathways. In this work, the photosynthetic bacterium Rhodobacter sphaeroides has been used as a model system for the study of this reaction. The bchH and the bchI and -D genes from R. sphaeroides were expressed in Escherichia coli. When cell-free(More)
Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). This seemingly simple reaction also is potentially one of the most interesting and crucial steps in the (bacterio)chlorophyll (Bchl/Chl)-synthesis pathway, owing to its position at the branch-point between haem and Bchl/Chl synthesis. Up until the level of Proto, haem and Bchl/Chl(More)
Barley mutants in the lociXantha-f, Xantha-g andXantha-h, when fed with 5-aminolevulinate in the dark, accumulate protoporphyrin IX. Mutant alleles at these loci that are completely blocked in protochlorophyllide synthesis are also blocked in development of prolamellar bodies in etioplasts. In contrast to wild type, thexan-f, -g and-h mutants had no(More)
The insertion of magnesium into protoporphyrin IX is the first step unique to chlorophyll production and is catalyzed by magnesium chelatase. The Rhodobacter sphaeroides genes, bchI and bchD together, and bchH alone, were cloned and expressed with the pET3a vector in Escherichia coli strain BL21 (DE3). The 40-kDa BchI protein was synthesized in greater(More)
Mg-chelatase catalyzes the first committed step of the chlorophyll biosynthetic pathway, the ATP-dependent insertion of Mg(2+) into protoporphyrin IX (PPIX). Here we report the reconstruction using single-particle cryo-electron microscopy of the complex between subunits BchD and BchI of Rhodobacter capsulatus Mg-chelatase in the presence of ADP, the(More)
A review of the biosynthesis of chlorophylls and bacteriochlorophylls from protoporphyrin IX with 235 references. The literature on the enzymes magnesium chelatase, S-adenosyl-L-methionine:magnesium protoporphyrin IX O-methyltransferase, magnesium-protoporphyrin IX monomethyl ester oxidative cyclase, protochlorophyllide oxidoreductase, chlorophyll synthase,(More)
Ketimine reductase (E.C. was purified to apparent homogeneity from lamb forebrain by means of a rapid multi-step chromatography protocol. The purified enzyme was identified by MS/MS (mass spectrometry) as μ-crystallin. The identity was confirmed by heterologously expressing human μ-crystallin in Escherichia coli and subsequent chromatographic(More)
Chlorophylls are essential for light-harvesting and energy transduction in photosynthesis. Four chemically distinct varieties have been known for the past 60 years. Here we report isolation of a fifth, which we designate chlorophyll f. Its in vitro absorption (706 nanometers) and fluorescence (722 nanometers) maxima are red-shifted compared to all other(More)