Robert William Caldwell

Learn More
Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the US, for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that(More)
Increases in arginase activity have been reported in a variety of disease conditions characterized by vascular dysfunction. Arginase competes with NO synthase for their common substrate arginine, suggesting a cause and effect relationship. We tested this concept by experiments with streptozotocin diabetic rats and high glucose (HG)-treated bovine coronary(More)
The purpose of these experiments was to determine the specific role of reactive oxygen species (ROS) in the blood-retinal barrier (BRB) breakdown that characterizes the early stages of vascular dysfunction in diabetes. Based on our data showing that high glucose increases nitric oxide, superoxide, and nitrotyrosine formation in retinal endothelial cells, we(More)
The pharmacology of the enantiomers of threo-methylphenidate (MPH) was evaluated in the rat to assess the relative contribution of each isomer to central and peripheral actions of the racemic drug. Fractional recrystallization of binaphthyl phosphate salts of dl-threo-MPH allowed resolution of d-threo-MPH and 92% enrichment of l-threo-MPH. The enantiomeric(More)
Retinal neovascularization and macular edema are central features of diabetic retinopathy, the major cause of blindness in the developed world. Current treatments are limited in their efficacy and are associated with significant adverse effects. Characterization of the molecular and cellular processes involved in vascular growth and permeability has led to(More)
Retinal neovascularization and macular edema are central features of diabetic retinopathy, a major cause of blindness in working age adults. The currently established treatment for diabetic retinopathy targets the vascular pathology by laser photocoagulation. This approach is associated with significant adverse effects due the destruction of neural tissue(More)
L-citrulline is the natural precursor of L-arginine, substrate for nitric oxide synthase (NOS) in the production of NO. Supplemental administration L-arginine has been shown to be effective in improving NO production and cardiovascular function in cardiovascular diseases associated with endothelial dysfunction, such as hypertension, heart failure,(More)
In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective(More)
Enhanced vascular arginase activity impairs endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production. Elevated angiotensin II (ANG II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. We(More)
BACKGROUND AND PURPOSE NO produced by endothelial NOS is needed for normal vascular function. During diabetes, aging and hypertension, elevated levels of arginase can compete with NOS for available l-arginine, reducing NO and increasing superoxide (O(2) (.-)) production via NOS uncoupling. Elevated O(2) (.-) combines with NO to form peroxynitrite (ONOO(-)),(More)