Robert Webster

Learn More
 To systematically identify and analyze the 15 HA and 9 NA subtypes of influenza A virus, we need reliable, simple methods that not only characterize partial sequences but analyze the entire influenza A genome. We designed primers based on the fact that the 15 and 21 terminal segment specific nucleotides of the genomic viral RNA are conserved between all(More)
The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs,(More)
Avian H9N2 influenza A virus has caused repeated human infections in Asia since 1998. Here we report that an H9N2 influenza virus infected a 5-year-old child in Hong Kong in 2003. To identify the possible source of the infection, the human isolate and other H9N2 influenza viruses isolated from Hong Kong poultry markets from January to October 2003 were(More)
Surveillance of North America's wild ducks and shorebirds for 26 and 16 years, respectively, revealed differences in the prevalence of orthomyxoviruses between these hosts. Shorebirds had a high frequency of influenza A virus isolation during their northern migration, while wild ducks had high virus isolation frequencies during their southern migration.(More)
Ducks and wild waterfowl perpetuate all strains of influenza viruses in nature. In their natural host, influenza viruses typically cause asymptomatic infection and little pathology. Ducks are often resistant to influenza viruses capable of killing chickens. Here, we show that the influenza virus sensor, RIG-I, is present in ducks and plays a role in(More)
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay(More)
Avian influenza viruses have adapted to human hosts, causing pandemics in humans. The key host-specific amino acid mutations required for an avian influenza virus to function in humans are unknown. Through multiple-sequence alignment and statistical testing of each aligned amino acid, we identified markers that discriminate human influenza viruses from(More)
The H5N1 influenza viruses transmitted to humans in 1997 were highly virulent, but the mechanism of their virulence in humans is largely unknown. Here we show that lethal H5N1 influenza viruses, unlike other human, avian and swine influenza viruses, are resistant to the antiviral effects of interferons and tumor necrosis factor alpha. The nonstructural (NS)(More)
To provide information on the mechanism of perpetuation of influenza viruses among waterfowl reservoirs in nature, virological surveillance was carried out in Alaska during their breeding season in summer from 1991 to 1994. Influenza viruses were isolated mainly from fecal samples of dabbling ducks in their nesting places in central Alaska. The numbers of(More)
Pandemic influenza viruses cause significant mortality in humans. In the 20th century, 3 influenza viruses caused major pandemics: the 1918 H1N1 virus, the 1957 H2N2 virus, and the 1968 H3N2 virus. These pandemics were initiated by the introduction and successful adaptation of a novel hemagglutinin subtype to humans from an animal source, resulting in(More)