Robert Waelder

Learn More
We introduce the equivariant elliptic genus for open varieties and prove an equivariant version of the change of variable formula for blow-ups along complete intersections. In addition, we prove the equivariant elliptic genus analogue of the McKay correspondence for the ALE spaces.
We show that for infinite measure-preserving transformations, power weak mixing does not imply multiple recurrence. We also show that the infinite measure-preserving " Chacon transformation " known to have infinite ergodic index is not power weakly mixing, and is 3-recurrent but not multiply recurrent. We also construct some doubly ergodic infinite(More)
We define the singular orbifold elliptic genus and E-function for all normal surfaces without strictly log-canonical singularities, and prove the analogue of the McKay correspondence in this setting. Our invariants generalize the stringy invariants defined by Willem Veys for this class of singularities. We show that the ability to define these in-variants(More)