Robert W. Schoonover

Learn More
A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that(More)
This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents(More)
The state of polarization of strongly focused, radially polarized electromagnetic fields is examined. It is found that several types of polarization singularities exist. Their relationship is investigated, and it is demonstrated that on smoothly varying a system parameter, such as the aperture angle of the lens, different polarization singularities can(More)
We report an investigation of image reconstruction in photoacoustic tomography for objects that possess heterogeneous material and acoustic attenuation distributions. When the object contains materials, such as bone and soft-tissue, that are modeled using power law attenuation models with distinct exponents, we demonstrate that the effects of acoustic(More)
Correlation dependent, propagation-induced shifts in the generalized spectra of cyclostationary, random fields are predicted. This result generalizes the Wolf shift for stationary fields and is applicable to periodic trains of fast pulses such as might be generated in comb spectroscopy or other mode-locked pulsed systems. Examples illustrate these shifts(More)
A method is described which elucidates propagation of an electromagnetic field generated by a stochastic, electromagnetic source within the short wavelength limit. The results can be used to determine statistical properties of fields using ray tracing methods. A method is described which elucidates propagation of an electromagnetic field generated by a(More)
Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality(More)
We present a detailed analysis of the structure of strongly focused, radially polarized electromagnetic fields. The existence of phase singularities of the two components of the electric field is demonstrated. Two different mechanisms to obtain creation or annihilation of these phase singularities are discussed. These are changing the aperture angle of the(More)
Transport-of-intensity and transport-of-spectrum equations are derived using the coherent mode decomposition for paraxial fields having an arbitrary state of coherence. We give a simple example that demonstrates the difference between a partially coherent and a fully coherent transport of intensity or spectrum. The results presented here may be used to(More)
Using a recently developed reconstruction method for photoacoustic tomography (PAT) valid for a planar measurement geometry parallel to a layered medium, we investigate the effects of shear wave propagation in the solid layer upon the ability to estimate Fourier components of the object. We examine this ability as a function of the thickness of the layer(More)