Robert W Kwiatkowski

Learn More
Flap endonucleases (FENs) isolated from archaea are shown to recognize and cleave a structure formed when two overlapping oligonucleotides hybridize to a target DNA strand. The downstream oligonucleotide probe is cleaved, and the precise site of cleavage is dependent on the amount of overlap with the upstream oligonucleotide. We have demonstrated that use(More)
The invasive signal amplification reaction has been previously developed for quantitative detection of nucleic acids and discrimination of single-nucleotide polymorphisms. Here we describe a method that couples two invasive reactions into a serial isothermal homogeneous assay using fluorescence resonance energy transfer detection. The serial version of the(More)
BACKGROUND The development of vascular disease involves the interaction of genetic and environmental factors. Because vascular disease is a major contributor to mortality in Western societies, we hypothesized that deleterious polymorphisms associated with hemostasis decrease in frequency among a healthy population as a function of age. METHODS The(More)
Attempts to investigate changes in various forms of intrahepatic hepatitis B virus (HBV) DNA during antiviral therapy have been hampered by limitations in technologies and scarcity of adequate tissue for analysis. We used a sensitive, specific assay to detect and quantitate covalently closed circular DNA (cccDNA) from total intrahepatic HBV DNA in clinical(More)
RNA quantitation is becoming increasingly important in basic, pharmaceutical, and clinical research. For example, quantitation of viral RNAs can predict disease progression and therapeutic efficacy. Likewise, gene expression analysis of diseased versus normal, or untreated versus treated, tissue can identify relevant biological responses or assess the(More)
Concomitant advances made by the Human Genome Project and in the development of nucleic acid screening technologies are driving the expansion of pharmacogenomic research and molecular diagnostics. However, most current technologies are restrictive due to their complexity and/or cost, limiting the potential of personalized medicine. The invader assay, which(More)
Cytosolic creatine kinase isoenzymes MM, MB, and BB are assembled from M or B subunits which occur in different relative amounts in specific tissues. The accumulation of mRNAs encoding the M and B subunits was measured during myogenesis in culture. The relative concentration of the two mRNAs was determined by hybridization with a M-CK cDNA probe isolated(More)
The nucleotide sequence of creatine kinase-M (CK-M) cDNA clones has been determined. It includes the entire coding region of 381 amino acids in addition to 5' and 3' untranslated regions. A comparison with a partial sequence from rat CK-M reveals 84% nucleotide sequence homology in the coding region but divergence in the 3' untranslated region. The amino(More)
We have cloned and identified a DNA sequence complementary to the mRNA of creatine kinase (CK) isozyme M, although the mRNA is a minor species of the total mRNA in developing myoblasts. Poly(A)+RNA from breast and thigh muscle of 5-week-old chicks was enriched for CK mRNA by a novel procedure of sucrose gradient centrifugation in the presence of(More)
The Invader technology has been developed for the detection of nucleic acids. It is a signal amplification system able to accurately quantify DNA and RNA targets with high sensitivity. Exquisite specificity is achieved by combining hybridization with enzyme recognition, which provides the ability to discriminate mutant from wild-type at ratios greater than(More)