Robert Vidmar

Learn More
BACKGROUND Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin(More)
Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO) mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the(More)
Human stefins and cystatins are physiologically important cysteine proteinase inhibitors, acting as a first line of defense against undesirable proteolysis. Mutations in the cystatin B gene cause a rare form of epilepsy EPM1. Its two missense mutants, G50E and Q71P, lack the inhibitory activity and are partially unfolded, which leads to changes in their(More)
Extracellular cysteine cathepsins are known to drive cancer progression, but besides degradation of extracellular matrix proteins little is known about their physiological substrates and thus the molecular mechanisms they deploy. One of the major mechanisms used by other extracellular proteases to facilitate cancer progression is proteolytic release of the(More)
1 Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia, 2 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia, 3 Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia, 4 Faculty of Chemistry and Chemical(More)
The genome of the parasite Trypanosoma cruzi encodes two copies of autophagy-related cysteine proteases, Atg4.1 and Atg4.2. T. cruzi autophagin-2 (TcAtg4.2) carries the majority of proteolytic activity and is responsible for processing Atg8 proteins near the carboxyl terminus, exposing a conserved glycine. This enables progression of autophagy and(More)
BACKGROUND Omics approaches have significantly increased our understanding of biological systems. However, they have had limited success in explaining the dramatically increased productivity of commercially important natural products by industrial high-producing strains, such as the erythromycin-producing actinomycete Saccharopolyspora erythraea. Further(More)
Proteases are important effectors of numerous physiological and pathological processes. Reliable determination of a protease's specificity is crucial to understand protease function and to develop activity-based probes and inhibitors. During the last decade, various proteomic approaches for profiling protease substrate specificities were reported. Although(More)
Proteolytic cleavage is a ubiquitous, irreversible, posttranslational modification that changes protein structure and function and plays an important role in numerous physiological and pathological processes. Over the last decade, proteases have become increasingly important clinical targets because many of their inhibitors are already used in the clinic or(More)