Learn More
Accurate genome assembly and gene model annotation are critical for comparative species and gene functional analyses. Here we present the completed genome sequence and annotation of the reference strain PH-1 of Fusarium graminearum, the causal agent of head scab disease of small grain cereals which threatens global food security. Completion was achieved by(More)
Targeted Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach to identify novel sequence variation in genomes, with the aims of investigating gene function and/or developing useful alleles for breeding. Despite recent advances in wheat genomics, most current TILLING methods are low to medium in throughput, being based on PCR(More)
Fusarium culmorum is a soilborne fungal plant pathogen that causes foot and root rot and Fusarium head blight on small-grain cereals, in particular on wheat and barley. We report herein the draft genome sequence of a 1998 field strain called FcUK99 adapted to the temperate climate found in England.
Fusarium graminearum floral infections are a major risk to the global supply of safe cereal grains. We report updates to the PH-1 reference genome and significant improvements to the annotation. Changes include introduction of legacy annotation identifiers, new gene models, secretome and effectorP predictions, and inclusion of extensive untranslated region(More)
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of(More)
Identifying pathogen virulence genes required to cause disease is crucial to understand the mechanisms underlying the pathogenic process. Plasmid insertion mutagenesis of fungal protoplasts is frequently used for this purpose in filamentous ascomycetes. Post transformation, the mutant population is screened for loss of virulence to a specific plant or(More)
This research investigates the creation and integration of a comprehensive three-dimensional submarine undersea battlespace visualization (SUBV) with existing platform fire control systems to enhance the weapons fire control decision-making process. Using 3-D visualization to represent undersea environments, mission planners and command and control (C&C)(More)
he allure of immersive technologies is undeniable. Unfortunately, the user's ability to interact with these environments lags behind the impressive visuals. In particular, it's difficult to navigate in unknown visual landscapes, find entities, access information, and select entities using 6 degrees-of-freedom (DOF) devices. We believe multimodal(More)
  • 1