Robert Sorrentino

Learn More
Patient medical records today contain vast amount of information regarding patient conditions along with treatment and procedure records. Systematic healthcare resource utilization analysis leveraging such observational data can provide critical insights to guide resource planning and improve the quality of care delivery while reducing cost. Of particular(More)
The rapid adoption of electronic health records (EHR) provides a comprehensive source for exploratory and predictive analytic to support clinical decision-making. In this paper, we investigate how to utilize EHR to tailor treatments to individual patients based on their likelihood to respond to a therapy. We construct a heterogeneous graph which includes(More)
OBJECTIVE This paper presents a study of methods for medical literature retrieval for case queries, in which the goal is to retrieve literature articles similar to a given patient case. In particular, it focuses on analyzing the performance of state-of-the-art general retrieval methods and improving them by the use of medical thesauri and physician(More)
Risk stratification is instrumental to modern clinical decision support systems. Comprehensive risk stratification should be able to provide the clinicians with not only the accurate assessment of a patient's risk but also the clinical context to be acted upon. However, existing risk stratification techniques mainly focus on predicting the risk score for(More)
Disease risk prediction has been a central topic of medical informatics. Although various risk prediction models have been studied in the literature, the vast majority were designed to be single-task, i.e. they only consider one target disease at a time. This becomes a limitation when in practice we are dealing with two or more diseases that are related to(More)
This paper reports the experiment results of the UIUC-IBM team in participating in the medical case retrieval task of ImageCLEF 2010. We experimented with multiple methods to leverage medical ontology and user (physician) feedback; both have worked very well, achieving the best retrieval performance among all the submissions.
We present a general simulation framework designed for modeling incentives in a health care delivery system. This first version of the framework focuses on representing provider incentives. Key framework components are described in detail, and we provide an overview of how data-driven analytic methods can be integrated with this framework to enable(More)
Drug therapeutic indications and side-effects are both measurable patient phenotype changes in response to the treatment. Inferring potential drug therapeutic indications and identifying clinically interesting drug side-effects are both important and challenging tasks. Previous studies have utilized either chemical structures or protein targets to predict(More)