Robert Snyder

Learn More
Using the 59Fe uptake method of Lee et al. it was shown that erythropoiesis in female mice was inhibited following IP administration of benzene, hydroquinone, p-benzoquinone, and muconaldehyde. Toluene protected against the effects of benzene. Coadministration of phenol plus either hydroquinone or catechol resulted in greatly increased toxicity. The(More)
  • Robert Snyder
  • International journal of environmental research…
  • 2012
Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While(More)
Rabbit bone marrow mitochondria, stripped of their outer membrane (mitoplasts), have been shown to carry out the NADPH-dependent bioactivation of radiolabelled benzene in vitro to metabolites capable of covalently binding to mtDNA, thereby inhibiting transcription. The metabolites of benzene produced in bone marrow cells by the microsomal cytochrome P-450(More)
Rabbits were treated with benzene (586 mg/kg/ b.i.d./4 days) after which DNA was isolated from liver and analyzed for adduct formation using the [32P] postlabeling method of Randerath and coworkers (Randerath et al. 1981; Reddy et al. 1984, 1986, 1987). Liver 500 g and 9000 g fractions were analyzed for adducts. There appeared to be several adducts in both(More)
Rat liver mitoplasts were incubated first with [3H]dGTP, to form DNA labeled in G, and then with [14C]benzene. The DNA was isolated and upon isopycnic density gradient centrifugation in CsCl yielded a single fraction of DNA labeled with both [3H] and [14C]. These data are consistent with the covalent binding of one or more metabolites of benzene to DNA. The(More)
Rat liver mitochondria incubated with the metabolites of benzene, p-benzoquinone or 1,2,4-benzenetriol, showed a dose-dependent inhibition of [3H]dTTP incorporation into mtDNA with median inhibitory concentrations of 1 mM for each compound. Benzene and the metabolites phenol, catechol and hydroquinone did not inhibit at concentrations up to 10 mM.(More)