Robert Silvers

Learn More
The presence of amyloid plaques composed of amyloid beta (Aβ) fibrils is a hallmark of Alzheimer's disease (AD). The Aβ peptide is present as several length variants with two common alloforms consisting of 40 and 42 amino acids, denoted Aβ1-40 and Aβ1-42, respectively. While there have been numerous reports that structurally characterize fibrils of Aβ1-40,(More)
During oxidative folding, the formation of disulfide bonds has profound effects on guiding the protein folding pathway. Until now, comparatively little is known about the changes in the conformational dynamics in folding intermediates of proteins that contain only a subset of their native disulfide bonds. In this comprehensive study, we probe the(More)
The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest(More)
The TATA binding protein (TBP) is the central core protein of the transcription factor II D that binds directly to the TATA box and therefore plays an integral part in eukaryotic transcription. This pivotal position of TBP is underlined by the vast number of interaction partners involved. Expression and purification of human TATA binding protein (hTBP) has(More)
Understanding the driving forces governing protein assembly requires the characterization of interactions at molecular level. We focus on two homologous oppositely charged proteins, lysozyme and α-lactalbumin, which can assemble into microspheres. The assembly early steps were characterized through the identification of interacting surfaces monitored at(More)
An in-cell perspective: Nowadays, in-cell NMR spectroscopy has proven to be a thrilling alternative for the investigation of biomacromolecules under physiological conditions at atomic resolution. A recent example demonstrating significant progress in in-cell NMR was published by the groups of Banci and Aricescu that investigated the post-translational(More)
Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more(More)