Robert Schloegl

Learn More
One of the main stumbling blocks in developing rational design strategies for heterogeneous catalysis is that the complexity of the catalysts impairs efforts to characterize their active sites. We show how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al(2)O(3) methanol synthesis catalyst by using a combination of experimental(More)
For many years the scientific community has believed in a promising future for carbon nanotubes for various applications in such diverse fields as polymer reinforcement, adsorption, catalysis, electronics and medicine. Industrial production of carbon nanotubes and -fibers and the subsequent availability and decrease of price, have rendered this vision(More)
Plants release into the atmosphere large quantities of volatile organic compounds (VOCs), of which methanol (MeOH), a putative waste product, is the second most abundant. Using online proton-transfer-reaction mass spectrometry (PTR-MS), we demonstrate that when Manduca sexta larvae attack Nicotiana attenuata plants, the wound-induced release of MeOH(More)
The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the(More)
We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon(More)
Dynamic surface rearrangement and thermal stability of N-functional groups on carbon nanotubes (CNTs), obtained by functionalization of pristine CNTs with NH(3), were studied by temperature-programmed XPS and MS: a link between the stability of the functional group and decomposition temperature have been established and a conversion into graphitic nitrogen(More)
In industrially relevant Cu/ZnO/Al2 O3 catalysts for methanol synthesis, the strong metal support interaction between Cu and ZnO is known to play a key role. Here we report a detailed chemical transmission electron microscopy study on the nanostructural consequences of the strong metal support interaction in an activated high-performance catalyst. For the(More)
The mechanism for the controlled synthesis of highly dispersed vanadia supported on mesoporous silica SBA-15 (VOx/SBA-15) is elucidated using X-ray photoelectron spectroscopy (XPS), Raman and diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). The synthesis consists of functionalization of SBA-15 using 3-aminopropyltrimethoxysilane (APTMS)(More)
Raman microspectroscopy (RM), temperature-programmed oxidation (TPO), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were combined to get comprehensive information on the relationship between structure and reactivity of soot in samples of spark discharge (GfG), heavy duty engine diesel (EURO VI and IV)(More)
The microstructure and electronic structure of environmentally relevant carbons such as Euro IV heavy duty diesel engine soot, soot from a black smoking diesel engine, spark discharge soot as model aerosol, commercial furnace soot and lamp black are investigated by transmission electron microscopy, electron energy-loss spectroscopy and X-ray photoelectron(More)