Robert Schlögl

Learn More
One of the main stumbling blocks in developing rational design strategies for heterogeneous catalysis is that the complexity of the catalysts impairs efforts to characterize their active sites. We show how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al(2)O(3) methanol synthesis catalyst by using a combination of experimental(More)
We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon(More)
Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with(More)
Alkynes can be selectively hydrogenated into alkenes on solid palladium catalysts. This process requires a strong modification of the near-surface region of palladium, in which carbon (from fragmented feed molecules) occupies interstitial lattice sites. In situ x-ray photoelectron spectroscopic measurements under reaction conditions indicated that much less(More)
The effect of silicon oxide surface segregation on the locally-resolved kinetics of the CO oxidation reaction on individual grains of a polycrystalline Pd foil was studied in situ by PEEM, MS and XPS. The silicon oxide formation induced by Si-impurity segregation at oxidizing conditions, was monitored by XPS and its impact on the global and local (spatially(More)
Although modern catalytic converters significantly reduce pollution from automobile engines, a major amount of pollutants is still emitted just after " cold-start " , that is, until the catalytic converter warms up to its " ignition " temperature , at which the reaction rate rapidly switches from low to high conversion. There is thus substantial interest by(More)
The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as(More)
The role of artificially created defects and steps in the local reaction kinetics of CO oxidation on the individual domains of a polycrystalline Pd foil was studied by photoemission electron microscopy (PEEM), mass spectros-copy (MS), and scanning tunneling microscopy (STM). The defects and steps were created by STM-controlled Ar + sputtering and the novel(More)
Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10(-5) mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip.(More)