Learn More
CSILE, which stands for Computer-Supported Intentional Learning Environments, is an educational knowledge media system. CSILE allows information in several media (text, drawings, graphs, timelines, etc.) to be entered into a common database where it is available to be retrieved, linked, commented on, rated, and so forth. The environments and operations of(More)
Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation(More)
Wrapping of carbon nanotubes (CNTs) by single-stranded DNA (ssDNA) was found to be sequence-dependent. A systematic search of the ssDNA library selected a sequence d(GT)n, n = 10 to 45 that self-assembles into a helical structure around individual nanotubes in such a way that the electrostatics of the DNA-CNT hybrid depends on tube diameter and electronic(More)
We report a size-exclusion chromatography (SEC) process to purify DNA-wrapped carbon nanotubes (DNA-CNT) and to sort them into fractions of uniform length. A type of silica-based column resin was identified that shows minimum adsorption of DNA-CNT. Three such columns in series with pore sizes of 2000, 1000, and 300 A were found to separate DNA-CNT into(More)
The reaction of bis(benzene)vanadium with tetracyanoethylene, TCNE, affords an insoluble amorphous black solid that exhibits field-dependent magnetization and hysteresis at room temperature. The critical temperature could not be estimated as it exceeds 350 kelvin, the thermal decomposition temperature of the sample. The empirical composition of the reported(More)
We have found that racemic mixtures of chiral single-walled nanotubes (SWNTs) wrapped with d(GT)20 DNA oligomer exhibit circular dichroism (CD). We attribute the CD signal to induced CD arising from the coupling of transition moments of the SWNTs and the DNA. Although the nanotube mixture appears to contain both enantiomers in equal amounts, DNA-SWNT(More)
We report a simple solution process to form controlled patterns of aligned single-walled carbon nanotubes on solid substrates. The essential step of the process is to deposit a dilute solution of DNA-wrapped carbon nanotubes (DNA-CNTs) on a SiO(2) surface covered with a thin hydrophobic layer. This leads to deposition of fully aligned CNTs. The alignment(More)