Robert S. Manning

Learn More
Within the context of DNA rings, we analyze the relationship between intrinsic shape and the existence of multiple stable equilibria, either nicked or cyclized with the same link. A simple test, based on a perturbation expansion of symmetry breaking within a continuum elastic rod model, provides good predictions of the occurrence of such multiple(More)
A Monte Carlo code applied to the cgDNA coarse-grain rigid-base model of B-form double-stranded DNA is used to predict a sequence-averaged persistence length of lF = 53.5 nm in the sense of Flory, and of lp = 160 bp or 53.5 nm in the sense of apparent tangent-tangent correlation decay. These estimates are slightly higher than the consensus experimental(More)
INTRODUCTION Viral hemorrhagic fever (VHF) outbreaks, with high mortality rates, have often been amplified in African health institutions due to person-to-person transmission via infected body fluids.  By collating and analyzing epidemiological data from documented outbreaks, we observed that diagnostic delay contributes to epidemic size for Ebola and(More)
The theory of conjugate points in the calculus of variations is reconsidered with a perspective emphasizing the connection to finite-dimensional optimization. The object of central importance is the spectrum of the second-variation operator, analogous to the eigenvalues of the Hessian matrix in finite dimensions. With a few basic properties of this(More)
The theory of conjugate points in the classic calculus of variations allows, for a certain class of functionals, the characterization of a critical point as stable (i.e., a local minimum) or not. In this work, we generalize this theory to more general functionals, assuming certain generic properties of the second variation operator. The extended conjugate(More)
A previously unrecognized function of normal human hemoglobins occurring during protein assembly is described, i.e. self-regulation of subunit pairings and their durations arising from the variable strengths of their subunit interactions. Although many mutant human hemoglobins are known to have altered subunit interface strengths, those of the normal(More)
The different types of naturally occurring, normal human hemoglobins vary in their tetramer-dimer subunit interface strengths (stabilities) by three orders of magnitude in the liganded (CO or oxy) state. The presence of embryonic zeta-subunits leads to an average 20-fold weakening of tetramer-dimer interfaces compared to corresponding hemoglobins containing(More)
The rheologic behavior of sickle cells was evaluated with a constant flow filtration system at 37 degrees C by using filters with pores of 4.8 microns diameter. Analysis of the shape of the pressure-time curves suggested that sickle cells were subdivided into two discrete subpopulations: (1) relatively deformable cells and (2) cells so rigid that they(More)