Learn More
The regular extension axiom, REA, was first considered by Peter Aczel in the context of Constructive Zermelo-Fraenkel Set Theory as an axiom that ensures the existence of many inductively defined sets. REA has several natural variants. In this note we gather together metamathematical results about these variants from the point of view of both classical and(More)
In order to build the collection of Cauchy reals as a set in constructive set theory, the only Power Set-like principle needed is Exponentiation. In contrast, the proof that the Dedekind reals form a set has seemed to require more than that. The main purpose here is to show that Exponen-tiation alone does not suffice for the latter, by furnishing a Kripke(More)
Some models of set theory are given which contain sets that have some of the important characteristics of being geometric, or spatial, yet do not have any points, in various ways. What's geometrical is that there are functions to these spaces defined on the ambient spaces which act much like distance functions, and they carry normable Riesz spaces which act(More)