#### Filter Results:

#### Publication Year

1997

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Planar functions were introduced by Dembowski and Ostrom ([4]) to describe projective planes possessing a collineation group with particular properties. Several classes of planar functions over a finite field are described, including a class whose associated affine planes are not translation planes or dual translation planes. This resolves in the negative a… (More)

Strong conditions are derived for when two commutative presemi-fields are isotopic. It is then shown that any commutative presemifield of odd order can be described by a planar Dembowski-Ostrom polynomial and conversely , any planar Dembowski-Ostrom polynomial describes a commutative presemifield of odd order. These results allow a classification of all… (More)

- Aart Blokhuis, Robert S Coulter, Marie Henderson, Christine M O 'keefe

1 Dembowski-Ostrom Polynomials and Linearised Polynomials Let p be a prime and q = p e. Let F q denote the finite field of order q and F * q represent the set of non-zero elements of F q. The ring of polynomials in the indeterminate X with coefficients from F q will be represented by F q [X]. A polynomial f ∈ F q [X] which permutes F q under evaluation is… (More)

We consider a class of Weil sums involving polynomials of a particular shape. In all cases, explicit evaluations are obtained.

We determine the number of Fq-rational points of a class of Artin-Schreier curves by using recent results concerning evaluations of some exponential sums. In particular, we determine infinitely many new examples of maximal and minimal plane curves in the context of the Hasse-Weil bound.

Let H be a subgroup of the multiplicative group of a finite field. In this note we give a method for constructing permutation polynomials over the field using a bi-jective map from H to a coset of H. A similar, but inequivalent, method for lifting permutation behaviour of a polynomial to an extension field is also given.

We consider the implications of the equivalence of commutative semifields of odd order and planar Dembowski-Ostrom polynomials. This equivalence was outlined recently by Coulter and Henderson. In particular, following a more general statement concerning semifields we identify a form of planar Dembowski-Ostrom polynomial which must define a commutative… (More)

The development of Public Key Infrastructures (PKIs) is highly desirable to support secure digital transactions and communications throughout existing networks. It is important to adopt a particular trust structure or PKI model at an early stage as this forms a basis for the PKI's development. Many PKI models have been proposed but use only natural language… (More)