Learn More
Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a(More)
Networks of model neurons with balanced recurrent excitation and inhibition produce irregular and asynchronous spiking activity. We extend the analysis of balanced networks to include the known dependence of connection probability on the spatial separation between neurons. In the continuum limit we derive that stable, balanced firing rate solutions require(More)
The fact that the eigenvalues of the family of matrices A(t) do not determine the stability of non-autonomous differential equations x = A(t)x is well known. This point is often illustrated using examples in which the matrices A(t) have constant eigenvalues with negative real part, but the solutions of the corresponding differential equation grow in time.(More)
Correlations between neuronal spike trains affect network dynamics and population coding. Overlapping afferent populations and correlations between presynaptic spike trains introduce correlations between the inputs to downstream cells. To understand network activity and population coding, it is therefore important to understand how these input correlations(More)
Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short-term depression(More)
We consider a pair of stochastic integrate and fire neurons receiving correlated stochastic inputs. The evolution of this system can be described by the corresponding Fokker-Planck equation with non-trivial boundary conditions resulting from the refractory period and firing threshold. We propose a finite volume method that is orders of magnitude faster than(More)
A description of healthy and pathological brain dynamics requires an understanding of spatiotemporal patterns of neural activity and characteristics of its propagation between interconnected circuits. However, the structure and modulation of the neural activation maps underlying these patterns and their propagation remain elusive. We investigated effects of(More)
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this(More)
Neurons integrate inputs from thousands of afferents. Similarly, some experimental techniques record the pooled activity of large populations of cells. When cells in these populations are correlated, the correlation coefficient between the collective activity of two subpopulations is typically much larger than the correlation coefficient between individual(More)