Learn More
To control movements aided by functional electrical stimulation (FES) in paraplegic patients, stimulation of the paralyzed lower limbs might be adjusted in response to voluntary upper body effort. Recently, Donaldson and Yu proposed a theoretical approach, called "control by handle reactions of leg muscle stimulation" (CHRELMS), in which stimulation of the(More)
The aim of this study was to investigate the biomechanics and motor co-ordination in humans during stair climbing at different inclinations. Ten normal subjects ascended and descended a five-step staircase at three different inclinations (24 degrees, 30 degrees, 42 degrees ). Three steps were instrumented with force sensors and provided 6 dof ground(More)
It is generally accepted that augmented feedback, provided by a human expert or a technical display, effectively enhances motor learning. However, discussion of the way to most effectively provide augmented feedback has been controversial. Related studies have focused primarily on simple or artificial tasks enhanced by visual feedback. Recently, technical(More)
BACKGROUND Arm hemiparesis secondary to stroke is common and disabling. We aimed to assess whether robotic training of an affected arm with ARMin--an exoskeleton robot that allows task-specific training in three dimensions-reduces motor impairment more effectively than does conventional therapy. METHODS In a prospective, multicentre, parallel-group(More)
Musculotendon actuators produce active and passive moments at the joints they span. Due to the existence of bi-articular muscles, the passive elastic joint moments are influenced by the angular positions of adjacent joints. To obtain quantitative information about this passive elastic coupling between lower limb joints, we examined the passive elastic joint(More)
Rehabilitation robots start to become an important tool in stroke rehabilitation. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. Therefore, these devices have the potential to improve the rehabilitation process in stroke patients. While in the past, most groups have been(More)
Task-oriented repetitive movements can improve motor performance in patients with neurological or orthopaedic lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate, and document neurological and orthopedic rehabilitation. This paper deals with the application of "patient-cooperative" techniques to robot-aided(More)
Task-oriented repetitive movements can improve muscle strength and movement co-ordination in patients with impairments due to neurological lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate and document the rehabilitation of movements. The paper provides an overview of existing devices that can support(More)
During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation(More)
A crucial issue of functional electrical stimulation (FES) is the control of motor function by the artificial activation of paralyzed muscles. Major problems that limit the success of current FES systems are the nonlinearity of the target system and the rapid change of muscle properties due to fatigue. In this study, four different strategies, including an(More)