Learn More
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect(More)
We have performed single-molecule studies of GFP-LacI repressor proteins bound to bacteriophage lambda DNA containing a 256 tandem lac operator insertion confined in nanochannels. An integrated photon molecular counting method was developed to determine the number of proteins bound to DNA. By using this method, we determined the saturated mean occupancy of(More)
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the(More)
We show here that upconversion phosphors can be imaged both by infrared excitation and in a scanning electron microscope. We have synthesized and characterized for this work up-converting phosphor nanoparticles nonaggregated nanocrystals of size range 50-200 nm. We have investigated the optical properties of 50-200 nm nanoparticles and found a square(More)
We report the profiling of the 5-methyl cytosine distribution within single genomic-sized DNA molecules at a gene-relevant resolution. This method linearizes and stretches DNA molecules by confinement to channels with a dimension of about 250×200 nm(2). The methylation state is detected using fluorescently labeled methyl-CpG binding domain proteins (MBD),(More)
An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of [Formula: see text] in signal(More)
We have performed restriction mapping of DNA molecules using restriction endonucleases in nanochannels with diameters of 100-200 nm. The location of the restriction reaction within the device is controlled by electrophoresis and diffusion of Mg2+ and EDTA. We have successfully used the restriction enzymes SmaI, SacI, and PacI, and have been able to measure(More)
We show that genomic-length DNA molecules imaged in nano-channels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA(More)
We report that double-stranded DNA collapses in the presence of ac electric fields at frequencies of a few hundred Hertz, and does not stretch as commonly assumed. In particular, we show that confinement-stretched DNA can collapse to about one quarter of its equilibrium length. We propose that this effect is based on finite relaxation times of the(More)