Learn More
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect(More)
We have performed single-molecule studies of GFP-LacI repressor proteins bound to bacteriophage lambda DNA containing a 256 tandem lac operator insertion confined in nanochannels. An integrated photon molecular counting method was developed to determine the number of proteins bound to DNA. By using this method, we determined the saturated mean occupancy of(More)
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the(More)
We show here that upconversion phosphors can be imaged both by infrared excitation and in a scanning electron microscope. We have synthesized and characterized for this work up-converting phosphor nanoparticles nonaggregated nanocrystals of size range 50-200 nm. We have investigated the optical properties of 50-200 nm nanoparticles and found a square(More)
We have performed restriction mapping of DNA molecules using restriction endonucleases in nanochannels with diameters of 100-200 nm. The location of the restriction reaction within the device is controlled by electrophoresis and diffusion of Mg2+ and EDTA. We have successfully used the restriction enzymes SmaI, SacI, and PacI, and have been able to measure(More)
We show that genomic-length DNA molecules imaged in nano-channels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA(More)
We report the profiling of the 5-methyl cytosine distribution within single genomic-sized DNA molecules at a gene-relevant resolution. This method linearizes and stretches DNA molecules by confinement to channels with a dimension of about 250×200 nm(2). The methylation state is detected using fluorescently labeled methyl-CpG binding domain proteins (MBD),(More)
Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly(More)
Upconverting nanoparticles (UCNPs) when excited in the near-infrared (NIR) region display anti-Stokes emission whereby the emitted photon is higher in energy than the excitation energy. The material system achieves that by converting two or more infrared photons into visible photons. The use of the infrared confers benefits to bioimaging because of its(More)