Robert Pelcovits

Learn More
We present visualization tools for analyzing molecular simulations of liquid crystal (LC) behavior. The simulation data consists of terabytes of data describing the position and orientation of every molecule in the simulated system over time. Condensed matter physicists study the evolution of topological defects in these data, and our visualization tools(More)
In the 1970s, deGennes discussed the fundamental geometry of smectic liquid crystals and established an analogy between the smectic A phase and superconductors. It follows that smectic layers expel twist deformations in the same way that superconductors expel magnetic field. We make a direct observation of the penetration of twist at the edge of a single(More)
Researchers in computational condensed matter physics deal with complex data sets consisting of time varying 3D tensor, vector, and scalar quantities. Particularly, in the research of topological defects in nematic liquid crystals (LC) displaying the results of the computer simulation of molecular dynamics presents a challenge. Combining existing immersive(More)
Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order(More)
We present a method of visualizing topological defects arising in numerical simulations of liquid crystals. The method is based on scientific visualization techniques developed to visualize second-rank tensor fields, yielding information not only on the local structure of the field but also on the continuity of these structures. We show how these techniques(More)
We consider a theoretical model for the chiral smectic A twisted ribbons observed in assemblies of fd viruses condensed by depletion forces. The depletion interaction is modeled by an edge energy assumed to be proportional to the depletant polymer in solution. Our model is based on the Helfrich energy for surface bending and the de Gennes model of chiral(More)
Curved textures of ferroelectric smectic-C* liquid crystals produce space charge when they involve divergence of the spontaneous polarization field. Impurity ions can partially screen this space charge, reducing long-range interactions to local ones. Through studies of the textures of islands on very thin free-standing smectic films, we see evidence of this(More)
The application of a sufficiently strong strain perpendicular to the pitch axis of a monodomain cholesteric elastomer unwinds the cholesteric helix. Previous theoretical analyses of this transition ignored the effects of Frank elasticity which we include here. We find that the strain needed to unwind the helix is reduced because of the Frank penalty and the(More)
Molecular orientation fluctuations in ferroelectric smectic liquid crystals produce space charges, due to the divergence of the spontaneous polarization. These space charges interact with mobile ions, so that one must consider the coupled dynamics of the orientation and ionic degrees of freedom. Previous theory and light scattering experiments on thin(More)
To model a nematic emulsion consisting of a surfactant–coated water droplet dispersed in a nematic host, we performed a molecular dynamics simulation of a droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase. Strong radial anchoring at the surface of the droplet induced a Saturn ring defect configuration, consistent with theoretical(More)