Robert P. Irwin

Learn More
Intercellular communication between gamma-aminobutyric acid (GABA)ergic suprachiasmatic nucleus (SCN) neurons facilitates light-induced phase changes and synchronization of individual neural oscillators within the SCN network. We used ratiometric Ca(2+) imaging techniques to record changes in the intracellular calcium concentration ([Ca(2+)](i)) to study(More)
Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in(More)
Hyperexcited states, including depolarization block and depolarized low amplitude membrane oscillations (DLAMOs), have been observed in neurons of the suprachiasmatic nuclei (SCN), the site of the central mammalian circadian (~24-hour) clock. The causes and consequences of this hyperexcitation have not yet been determined. Here, we explore how individual(More)
Glutamate released from retinohypothalamic tract (RHT) synapses with suprachiasmatic nucleus (SCN) neurons induces phase changes in the circadian clock presumably by using Ca2+ as a second messenger. We used electrophysiological and Ca2+ imaging techniques to simultaneously record changes in the membrane potential and intracellular calcium concentration(More)
Neuroactive peptides and the intracellular calcium concentration ([Ca(2+) ](i) ) play important roles in light-induced modulation of gene expression in the suprachiasmatic nucleus (SCN) neurons that ultimately control behavioral rhythms. Vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) are expressed rhythmically within populations of SCN(More)
Simultaneous electrophysiological and fluorescent imaging recording methods were used to study the role of changes of membrane potential or current in regulating the intracellular calcium concentration. Changing environmental conditions, such as the light-dark cycle, can modify neuronal and neural network activity and the expression of a family of circadian(More)
Presynaptic GABA(B) receptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABA(B)-receptor modulation of RHT transmission.(More)
GABA is a principal neurotransmitter in the suprachiasmatic hypothalamic nucleus (SCN), the master circadian clock. Despite the importance of GABA and GABA uptake for functioning of the circadian pacemaker, the localization and expression of GABA transporters (GATs) in the SCN has not been investigated. The present studies used Western blot analysis,(More)
The suprachiasmatic nucleus (SCN) of the hypothalamus regulates biological circadian time thereby directly impacting numerous physiological processes. The SCN is composed almost exclusively of gamma-aminobutyric acid (GABA)ergic neurons, many of which synapse with other GABAergic cells in the SCN to exert an inhibitory influence on their postsynaptic(More)
Many postsynaptic neurons release a retrograde transmitter that modulates presynaptic neurotransmitter release. In the suprachiasmatic nucleus (SCN), retrograde signaling is suggested by the presence of dendritic dense-core vesicles. Whole-cell voltage-clamp recordings were made from rat SCN neurons to determine whether a retrograde messenger could modulate(More)
  • 1